Constant Acceleration Equations

Mechanics 1.9.

For an object that has an initial velocity u and that is moving in a straight line with constant acceleration a, the following equations connect the final velocity v and displacement s in a given time t.

$$
\begin{align*}
& v=u+a t \tag{1}\\
& s=\frac{1}{2}(u+v) t \tag{2}\\
& s=u t+\frac{1}{2} a t^{2} \tag{3}\\
& s=v t-\frac{1}{2} a t^{2} \tag{4}\\
& v^{2}=u^{2}+2 a s \tag{5}
\end{align*}
$$

Note: These equations cannot be used if the acceleration is not constant.

Worked Example 1.

A motorbike joins a motorway traveling at $10 \mathrm{~m} \mathrm{~s}^{-1}$, and increases speed to $30 \mathrm{~m} \mathrm{~s}^{-1}$ with a constant acceleration of $1.25 \mathrm{~m} \mathrm{~s}^{-2}$ along the straight road. How much time does this take, and how far does the bike travel in this time?

Solution.

Firstly consider what information has been given, namely $u=10 \mathrm{~m} \mathrm{~s}^{-1}, v=30 \mathrm{~m} \mathrm{~s}^{-1}$ and $a=1.25 \mathrm{~m} \mathrm{~s}^{-2}$.
The question asks for the values of t and then s.
The equation that connects u, v, a and t is (1). Inserting the known values into (1) gives:

$$
\begin{aligned}
30 & =10+1.25 t \\
20 & =1.25 t \\
\Rightarrow t & =16 \mathrm{~s}
\end{aligned}
$$

Now either equation (2), (3), (4) or (5) can be used to calculate s. For example, using (2):

$$
s=\frac{1}{2}(u+v) t=\frac{1}{2}(10+30) \times 16=320 \mathrm{~m} .
$$

Worked Example 2.

The driver of a car traveling along a straight road sees that the traffic lights, 40 metres away, have turned to red. Given that after 4 seconds the car stops exactly at the traffic lights, what is the deceleration of the car?
Solution.
Again, consider what information has been given, namely $s=40 \mathrm{~m}$ and $t=4 \mathrm{~s}$.

It can also be deduced that because the car was at rest when it reached the traffic lights, $v=0 \mathrm{~m} \mathrm{~s}^{-1}$. The question asks for the deceleration and so involves a.
The equation that connects s, t, v and a is (4). Inserting the known values into (4) gives:

$$
\begin{aligned}
s & =v t-\frac{1}{2} a t^{2} \\
40 & =0 \times 4-\frac{1}{2} \times a \times 4^{2} \\
40 & =-8 a \\
\Rightarrow a & =-5.0 \mathrm{~m} \mathrm{~s}^{-2}(\text { to } 2 \text { s.f. })
\end{aligned}
$$

Therefore, the car decelerates at a rate of $5 \mathrm{~m} \mathrm{~s}^{-2}$

Worked Example 3.

A child throws a tennis ball vertically upwards at $7.7 \mathrm{~m} \mathrm{~s}^{-1}$ from ground level. Assuming that no resistance forces act on the ball, so that it moves only under the influence of gravity ($\mathrm{g}=9.81 \mathrm{~m}$ s^{-2}), what is the maximum height the tennis ball reaches?

Solution.

Here, consider what information is already known and what can be used.
It is known that $u=7.7 \mathrm{~m} \mathrm{~s}^{-1}$ and $a=-9.81 \mathrm{~m} \mathrm{~s}^{-2}$ as gravity acts downwards and the positive direction is upwards. It can also be deduced that at the maximum height $v=0 \mathrm{~m} \mathrm{~s}^{-1}$.

Therefore, using (5):

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
0 & =7.7^{2}+2 \times(-9.81) \times s \\
0 & =59.29-19.62 \times s \\
\Rightarrow s & =3.0 \mathrm{~m} \text { (to } 2 \text { s.f. })
\end{aligned}
$$

Exercises

1. A rally car accelerates from $10 \mathrm{~m} \mathrm{~s}^{-1}$ to $58 \mathrm{~m} \mathrm{~s}^{-1}$ in 8 seconds as it moves along a straight road. Given that the acceleration is constant, what is the acceleration of the car?
2. A bus traveling along a straight road accelerates at $2 \mathrm{~m} \mathrm{~s}^{-2}$, for 4 seconds, covering a distance of 44 metres. After the 4 seconds what velocity is the bus traveling at?
3. A rowing boat crosses the finish line at $12 \mathrm{~m} \mathrm{~s}^{-1}$ and carries on in a straight line. If it immediately decelerates at $4 \mathrm{~m} \mathrm{~s}^{-2}$ until it comes to rest, how far past the finish line will the rowing boat come to a stop?
4. During the middle of an 800 metre race an athlete running at $6.8 \mathrm{~m} \mathrm{~s}^{-1}$ constantly accelerates, along part of the straight, to $8 \mathrm{~m} \mathrm{~s}^{-1}$ in order to get in a better position for the final lap. Given this took 2 seconds, what distance did the athlete cover in this time?
5. A train leaves a station from rest and travels along a straight track. If after 20 seconds the train is 500 metres from the station, what is the acceleration of the train?
6. A lift at the ground floor rises vertically from rest with constant a acceleration of $0.6 \mathrm{~m} \mathrm{~s}^{-2}$. If it passes the first floor at $1.8 \mathrm{~m} \mathrm{~s}^{-1}$, how high is the first floor?

Answers (all to 2 s.f.)

1. $6 \mathrm{~m} \mathrm{~s}^{-2}$
2. $15 \mathrm{~m} \mathrm{~s}^{-1}$
3. 18 m
4. 15 m
5. $2.5 \mathrm{~m} \mathrm{~s}^{-2}$
6. 2.7 m
