THE CALCULUS OF THE HYPERBOLIC FUNCTIONS

Using the basic fact that

$$
\frac{d\left[e^{x}\right]}{d x}=e^{x}
$$

And all usual rules of differentiation and integration , we can show:

$$
f(x) \equiv \cosh x \equiv \frac{e^{x}+e^{-x}}{2}
$$

then

$$
f^{\prime}(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \equiv \sinh x
$$

$$
\begin{aligned}
& f(x)=\cosh x \\
& f^{\prime}(x)=\sinh x
\end{aligned}
$$

SIMILAR RESULTS MAY BE DERIVED FOR OTHER HYPERBOLIC FUNCTIONS

FUNCTION	DERIVATIVE
\boldsymbol{y}	$\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\operatorname{sech}^{2} x$
$\operatorname{coth} x$	$-\operatorname{cosech}^{2} x$
$\operatorname{cosech} x$	$-\operatorname{coth} x \operatorname{cosech} x$
$\operatorname{sech} x$	$-\tanh x \operatorname{sech} x$

