THE CALCULUS OF THE HYPERBOLIC FUNCTIONS

Using the basic fact that

$$\frac{d\left[e^{x}\right]}{dx} = e^{x}$$

And all usual rules of differentiation and integration , we can show:

$$f(x) \equiv \cosh x \equiv \frac{e^x + e^{-x}}{2}$$

then

$$f'(x) = \frac{1}{2}(e^x - e^{-x}) \equiv \sinh x$$

$$f(x) = \cosh x$$
$$f'(x) = \sinh x$$

SIMILAR RESULTS MAY BE DERIVED FOR OTHER HYPERBOLIC FUNCTIONS

FUNCTION	DERIVATIVE
у	$\frac{\mathrm{d}y}{\mathrm{d}x}$
sinh x	$\cosh x$
$\cosh x$	sinh x
tanh x	sech ² x
coth x	$-\operatorname{cosech}^2 x$
cosech x	$- \operatorname{coth} x \operatorname{cosech} x$
sech x	$- \tanh x \operatorname{sech} x$