WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU

General Certificate of Education

Tystysgrif Addysg Gyffredinol

Advanced Level/Advanced Subsidiary

Safon Uwch/Uwch Gyfrannol

MATHEMATICS FP3
Further Pure Mathematics
Specimen Paper 2005/2006

 $(1\frac{1}{2} \text{ hours})$

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

A calculator may be used for this paper.

A formula booklet is available and may be used.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Solve the equation

$$\cosh^2 x = 3 + \sinh x,$$

expressing the roots as natural logarithms.

[7]

2. (a) By drawing appropriate graphs, show that the equation

$$x^3 = \cot x$$

has one root in the interval $(0, \frac{\pi}{2})$. [3]

- Starting with an initial approximation $x_0 = 1$, use the Newton-Raphson method to calculate successive approximations x_1 , x_2 and x_3 to this root. Write down the value of x_3 correct to 6 decimal places and determine whether or not this gives the value of the root correct to 6 decimal places.
- 3. The arc joining the points (0,0) and (1,1) on the curve $y = x^3$ is rotated through four right-angles about the x-axis.
 - (a) (i) Show that the area of the curved surface generated is given by

$$2\pi \int_0^1 x^3 \sqrt{1 + 9x^4} \, \mathrm{d}x.$$
 [2]

(ii) Use the substitution $u = 1 + 9x^4$ to show this area is equal to

$$\frac{\pi}{27} \left(10\sqrt{10} - 1 \right). \tag{6}$$

4. Given that

$$I = \int_0^{\pi/2} e^{-2x} \cos x dx$$
and
$$J = \int_0^{\pi/2} e^{-2x} \sin x dx,$$

use integration by parts to show that

$$I = e^{-\pi} + 2J$$

and
$$J = 1 - 2I$$

Hence evaluate I and J, giving each answer in the form $a + be^{-\pi}$, where a and b are rational numbers. [11]

5.	(a)	Find the Maclaurin series of $ln(1 + sinx)$ up to and including the x^3 term	
			[9]

(b) Use your series to evaluate, approximately, the integral

$$\int_0^{\frac{1}{3}} \ln(1+\sin x) \mathrm{d}x \tag{4}$$

6. The curves C_1 and C_2 have polar equations as follows:

$$C_1: r = 1 - \cos\theta$$
 $(-\pi \le \theta \le \pi)$
 $C_2: r = \cos 2\theta$ $(-\frac{\pi}{4} \le \theta \le \frac{\pi}{4})$

- (a) Sketch C_1 and C_2 on the same diagram. [2]
- (b) Find the area enclosed by C_1 . [5]
- (c) Find the polar coordinates of the points of intersection of C_1 and C_2 . [6]
- 7. (a) Show that

$$\frac{\sin n\theta - \sin(n-1)\theta}{\sin \theta} = \cos(n-1)\theta.$$
 [2]

(b) Given that

$$I_n = \int_0^{\pi} \frac{\sin n\theta}{\sin \theta} d\theta$$

where n is an integer, show that for $n \ge 2$,

$$I_n = I_{n-2}. ag{4}$$

- (c) Hence evaluate I_n when n is
 - (i) an even integer,
 - (ii) an odd integer. [6]