The function f is defined by

$$f(x) = x^2 + \frac{a}{x}$$
, for $0 < x \le 1$,

$$f(x) = bx + \frac{1}{2}x^3 - 1$$
, for $x > 1$,

where a and b are constants. Given that both f and its derivative are continuous at x = 1, find the values of a and b.

2. Find the general solution, in radians, of the equation

$$\sin\theta + \sin \theta = \sin \theta. \tag{7}$$

3. (a) Find an expression, in its simplest form, for

$$\sum_{r=1}^{n} (2r-1)^2 \ . \tag{6}$$

(b) Hence evaluate

$$1^2 + 3^2 + 5^2 + \dots + 47^2 + 49^2$$
. [2]

- Use mathematical induction to prove that 5²ⁿ + 9ⁿ 2 is divisible by 8 for all positive integer values of n.
- 5. The roots of the cubic equation

$$x^3 - 2x^2 + 3x + 4 = 0$$

are denoted by α , β , γ .

(a) Find the cubic equation whose roots are βγ, γα and αβ.

[9]

(b) Show that

$$\alpha^2 + \beta^2 + \gamma^2 = -2.$$

Hence state the number of real roots of the above cubic equation. Give a reason for your answer. [5]

A pa	rabola	has equation $y^2 = 4ax$.		
(a)	Writ	Write down the equation of the line that has gradient m and passes through the point $(2a, 0)$.		
(b)	This line meets the parabola at the points P and Q . The mid-point of PQ is denoted by R .			
	Sho	w that the y-coordinate of R is $\frac{2a}{m}$, and find an expression, in terms of a and m,	for the	
	x-c0	x-coordinate of R .		
(c)	Sho	Show that as m varies, the locus of R is a parabola. [3]		
(d)	For this parabola, find the coordinates of its focus and the equation of its directrix. [4]			
The	functio	on f is defined on the domain $x > 0$ by $f(x) = \frac{x}{2} + \frac{2}{x}$		
(a)	(i)	Write down an expression for $f'(x)$.		
	(ii)	Hence determine whether or not f is monotonic.	[4]	
(b)	(i)	Find the coordinates of the stationary point on the graph of f .		
	(ii)	State the equations of the asymptotes on the graph of f .		
	(iii)	Sketch the graph of f.	[6]	
(c)	The	The interval $\left[\frac{1}{2}, \frac{5}{2}\right]$ is denoted by A. Determine		
	(i)	f(A),		
	(ii)	$f^{-1}(A)$.	[8]	

6.

7.