LOCI IN THE COMPLEX PLANE

Firstly we will look at Loci which should be learned and recognised.
WHAT IS A LOCUS? (What are loci?)
A LOCUS IS A PATH OF POSSIBLE POSITIONS OF A VARIABLE POINT, THAT OBEYS A GIVEN CONDITION. It can be given as a CARTESIAN EQUATION or it can be described in words.

EXAMPLE 1

What is the locus of the points which satisfy

$$
|z|=r
$$

The answer is that it will be a circle centre at the origin with radius of r .

$$
z=x+i y
$$

This is because so $|z|=\sqrt{\left(x^{2}+y^{2}\right)}=r$ using the definition of the

$$
x^{2}+y^{2}=r^{2}
$$

MODULUS of a complex number.
$x^{2}+y^{2}=r^{2}$ is the Cartesian equation of a circle centre the origin with radius r . (You should know this from your C 2 work on circles)

EXAMPLE 2

Find the locus of $\left|z-z_{1}\right|=r$
if $z_{1}=u+i v$ is a known, fixed complex number and $z=x+i y$ is a variable.

ANSWER

The locus of $\left|z-z_{1}\right|=r$ is a circle centre z_{1} and radius r.
This is because

$$
\begin{aligned}
& |(x+i y)-(u+i v)|=r \\
& |(x-u)-i(y-v)|=r \\
& \sqrt{(x-u)^{2}+(y-v)^{2}}=r \\
& (x-u)^{2}+(y-v)^{2}=r^{2}
\end{aligned} \text { and by the definition of modulus }
$$

Which is the Cartesian equation of a circle centre (u, v) and radius r.
(Again with familiarity of C2 circles work)

2003 P5 Past Paper Question.
The complex number z is represented by the point P on the Argand diagram.
(a) Given that

$$
|z-1-i|=|z-2|
$$

find, in its simplest form, the Cartesian equation of the locus of P .

SOLUTION

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$

$$
\begin{aligned}
|(x+i y)-1-i| & =|(x+i y)-2| \\
|(x-1)+i(y-1)| & =|(x-2)+i y| \\
\sqrt{(x-1)^{2}+(y-1)^{2}} & =\sqrt{(x-2)^{2}+y^{2}} \\
x^{2}-2 x+1+(y-1)^{2} & =(x-2)^{2}+y^{2} \\
x^{2}-2 x+1+y^{2}-2 y+1 & =x^{2}-4 x+4+y^{2} \\
-2 x+1-2 y+1 & =-4 x+4 \\
2 x-2 y-2 & =0 \\
y & =x-1
\end{aligned}
$$

By the
definition of the Modulus of a complex number.

So the Cartesian Equation is a straight line $y=x-1$
(b) Given that

$$
|z-2|=2|z+i|
$$

show that the locus of P is a circle.

SOLUTION

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$

$$
\begin{aligned}
& |(x+i y)-2|=2|(x+i y)+i| \\
& \mid(x-2)+i y)|=2| x+i(y+1) \mid \\
& \sqrt{(x-2)^{2}+y^{2}}=2 \sqrt{x^{2}+(y+1)^{2}} \\
& (x-2)^{2}+y^{2}=4\left(x^{2}+(y+1)^{2}\right) \\
& x^{2}-4 x+4+y^{2}=4\left(x^{2}+y^{2}+2 y+1\right) \\
& 0=4 x^{2}+4 y^{2}+8 y+4-\left(x^{2}-4 x+4+y^{2}\right) \\
& 0=3 x^{2}+3 y^{2}+8 y+4 x \\
& 0=3\left(x^{2}+y^{2}+\frac{8}{3} y+\frac{4}{3} x\right) \\
& 0=x^{2}+y^{2}+\frac{8}{3} y+\frac{4}{3} x
\end{aligned}
$$

This is sufficient to justify that the locus is a circle as we are left with a cartesian equation of a circle.

We could find the centre and radius of the circle by completing the square in x and y but this was not required in his question.

JANUARY 2007 FP1
The complex number z is represented by the point $P(x, y)$ in an Argand Diagram.
(a) Given that

$$
|z-3|=|z+i|
$$

find the Cartesian equation of the Locus of P .
(b) Find the two points lying on this locus for which $|z|=4$

The complex numbers z, w are represented, respectively by the points $P(x, y), Q(u, v)$ in Argand digrams and

$$
w=z^{2}
$$

P moves along the line $y=x-1$.
Find the Cartesian equation of the locus of Q.

The complex numbers z, w re represented by the points $P(x, y), Q(u, v)$ in Argand digrams and

$$
w=z^{2}
$$

(a) Find expressions for u and v in terms of x and y.

Given that P move along the line $\mathrm{x}+\mathrm{y}=1$, find the Cartesian equation of the locus of Q .

1995 LEGACY PAPER
The complex numbers z and w are represented by the points $P(x, y)$ and $\mathrm{Q}(\mathrm{u}, \mathrm{v})$ respectively in Argand diagrams and

$$
w=z^{2}
$$

(a) show that

$$
u=x^{2}-y^{2}
$$

and find an expression for v in terms of x and y.
(b) The point P moves along the curve with equation $2 x y^{2}=1$
(i) Show that

$$
v=\frac{1}{y}
$$

(ii) find the locus of Q , giving your answer in the form $\mathrm{u}=\mathrm{f}(\mathrm{v})$

Another example (not past paper)
The compex number z is represented by the point on an Argand diagram. Given that

$$
\left|\frac{z-1}{z+1}\right|=2
$$

show that the locus of P is a circle.
State its radius and the coordinates of the centre.

The complex numbers z and w are represented, respectively, by the points $P(x, y)$ and $Q(u, v)$ respectively in Argand diagrams and

$$
w=\frac{1}{Z}
$$

(a) show that

$$
x=\frac{u}{u^{2}+v^{2}}
$$

and find an expression for y in terms of u and v .
(b) the point P moves along the circle $x^{2}+y^{2}=2$. Find the equation of the locus of Q in the (u, v) plane.

JANUARY 2006 FP1
The complex numbers z and w are represented, respectively, by the points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ and $\mathrm{Q}(\mathrm{u}, \mathrm{v})$ respectively in Argand diagrams and

$$
w=\frac{z+3}{z+1}
$$

The point moves around the circle with equation $|z|=1$.
Find the Cartesian equation of the locus of Q. Identify this locus

NOT A PAST PAPER

The locus L in the Argand diagram has equation

$$
|z-2-4 i|=|z-4-6 i|
$$

Find the cartesian equation of L showing it to be a straight line

NOT PAST PAPER

The complex numbers $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ are represented in the Argand diagram by the points P and Q respectively. Given that

$$
w=(z+2)^{2}+5
$$

find u and v in terms of x and y.
If P moves along the line $x=0$, find the equation of the locus of Q in the form $u=f(v)$

