
INVERSE HYPERBOLIC FUNCTIONS 
 

We will recall that the function 

 
sinh

2

x xe ex
−−

=
is a 1 to 1 mapping.ie one value of x 

maps onto one value of sinhx. 
 
This implies that the inverse function exists. 
 
 1sinh sinhy x x −= ⇔ = y  
The function f(x)=sinhx clearly involves the exponential function. 
 
We will now find the inverse function in its logarithmic form. 
LET 

 

1sinh
sinh

y x
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THEN  

 2

y ye ex
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 (BY DEFINITION) 

SOME ALGEBRAIC MANIPULATION GIVES 
 

 2 y yx e e−= −  
 

MULTIPLYING BOTH SIDES BY  ye
 

 
22 1y yxe e= −  

 
RE-ARRANGING TO CREATE A QUADRATIC IN  ye

  
20 2y ye xe= − −1

APPLYING THE QUADRATIC FORMULA 
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2 1ye x x= ± +  

SINCE  
ye > 0   

WE MUST ONLY CONSIDER THE ADDITION. 
 

2 1ye x x= + +  
TAKING LOGARITHMS OF BOTH SIDES 
 

 { }2ln 1y x x= + +  

 
 
 
 
 
 
 
 
 
 

IN CONCLUSION 

 { }1 2sinh ln 1x x x− = + +
 

THIS IS CALLED THE LOGARITHMIC FORM OF THE INVERSE 
FUNCTION. 

The graph of the inverse function is of course a reflection in the line y=x. 
 

 



 
THE INVERSE OF COSHX 
 
The function  

 ( ) cosh
2

x xe ef x x
−+

= =  

Is of course not a one to one function. (observe the graph of the function 
earlier). 
In order to have an inverse the DOMAIN of the function is restricted. 
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This is a one to one mapping with RANGE  
  . [1,∞

 
We find the inverse function in logarithmic form in a similar way. 
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USING QUADRATIC FORMULA 
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y x xe 4− ± −
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2 1ye x x= ± −  

TAKING LOGS 

 { }2ln 1y x x= ± −
 

 { }2ln 1 is one possible expressiony x x= + −
 

APPROPRIATE IF THE DOMAIN OF THE ORIGINAL FUNCTION HAD BEEN 
RESTRICTED AS EXPLAINED ABOVE. 

 
 
HOWEVER CONSIDERING THE WHOLE FUNCTION (UNRESTRICTED) 
FOR EACH VALUE OF X THERE ARE TWO EQUAL AND OPPOSITE VALUES 
OF Y. 
 
This implies 

 { }1 2cosh ln 1x x x− = ± + −  
To add a more sound mathematical argument to this we can use some algebraic 
manipulation and laws of logs to the alternative solution. 
 
Consider  
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THIS IS NOTHING BUT A USEFUL TRICK! 
 
The numerator becomes 1 (check it and see!) 
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Now returning to out alternative solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 { }1 2cosh ln 1y x x x−= = ± + −
 

Covers all possible solutions depending on the restriction of the domain 



 
 
 
 
 
 
 
 
 
 

TASK: Show that the logarithmic form of the hyperbolic tan is 
 

HINT 
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Start as before by rearranging the inverse statement and then use  
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+
 

THE GOOD NEWS! 
THE FORMULAE FOR THE LOGARITHMIC FORMS OF INVERSE 
HYPERBOLIC FUNCTIONS ARE IN THE WJEC FORMULA BOOK! 


