CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

979/01

MATHEMATICS FP3

Further Pure Mathematics
A.M. MONDAY, 19 June 2006
(1 $1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Using the exponential definitions of $\sinh x$ and $\cosh x$, show that

$$
\begin{equation*}
\cosh 2 x=2 \sinh ^{2} x+1 \tag{3}
\end{equation*}
$$

(b) Solve the equation

$$
\begin{equation*}
\cosh 2 x=3 \sinh x \tag{6}
\end{equation*}
$$

giving your answers correct to three significant figures.
2. Use the substitution $t=\tan \left(\frac{x}{2}\right)$ to evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{(1+3 \cos x)}
$$

3. The function f is defined by

$$
f(x)=\ln \sec x .
$$

(a) Find the Maclaurin series of $f(x)$ up to and including the term in x^{4}.
(b) The equation

$$
\ln \sec x=1-10 x^{2}
$$

has a small positive root α. Use your series to find an approximation to α, giving your answer correct to four decimal places.
4. A curve has parametric equations

$$
x=\theta+\sin \theta, y=1+\cos \theta(0 \leqslant \theta \leqslant \pi) .
$$

(a) Show that

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}=4 \cos ^{2}\left(\frac{\theta}{2}\right)
$$

(b) Find the total length of the curve.
(c) The curve is rotated through 360° about the x-axis. Find the curved surface area of the solid of revolution generated.
5. The integral I_{n} is defined for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{\pi} \theta^{n} \sin \theta \mathrm{~d} \theta
$$

(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\pi^{n}-n(n-1) I_{n-2} . \tag{8}
\end{equation*}
$$

(b) Evaluate I_{4}, giving your answer in terms of powers of π.
6.

The diagram shows the initial line, the line $\theta=\frac{\pi}{2}$ and the curve C with equation

$$
r=\sinh \theta\left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right)
$$

(a) Find the area of the shaded region.
(b) The tangent to C at the point P is perpendicular to the initial line.
(i) Show that the θ coordinate of P satisfies the equation

$$
\tanh \theta=\cot \theta
$$

(ii) Starting with the initial approximation $\theta_{0}=1$ to the root of this equation, use the Newton-Raphson method once to find a better approximation θ_{1}. Give your answer correct to four significant figures.

