GCE AS/A level

979/01

MATHEMATICS FP3
 Further Pure Mathematics

A.M. WEDNESDAY, 18 June 2008
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Draw sketches of suitable graphs to show that the equation

$$
\cosh x=1+\sin x
$$

has two roots, one of which is positive.
(b) Use the Newton-Raphson method with a starting value $x_{0}=1.5$ to find the value of the positive root correct to four decimal places.
2. Use the substitution $x=1+\sinh \theta$ to evaluate the integral

$$
\int_{1}^{2} \sqrt{x^{2}-2 x+2} \mathrm{~d} x
$$

Give your answer correct to two decimal places.
3. The Taylor series of $f(x)$ about $x=a$ is

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2} f^{\prime \prime}(a)+\ldots
$$

(a) Find the first three terms of the Taylor series for $\frac{1}{\sqrt{x}}$ about $x=1$.
(b) Putting $x=\frac{8}{9}$, use your result to find a rational approximation for $\sqrt{2}$.
4. (a) Using appropriate definitions in terms of exponential functions, show that

$$
\begin{equation*}
\operatorname{sech}^{2} x \equiv 1-\tanh ^{2} x \tag{4}
\end{equation*}
$$

(b) Solve the equation

$$
5 \operatorname{sech}^{2} x=11-13 \tanh x
$$

giving your answer as a natural logarithm.
5. The integral I_{n} is defined, for $n \geqslant 0$, by

$$
I_{n}=\int_{1}^{2} x(\ln x)^{n} \mathrm{~d} x
$$

(a) Show that, for $n \geqslant 1$,

$$
\begin{equation*}
I_{n}=2(\ln 2)^{n}-\frac{n}{2} I_{n-1} \tag{5}
\end{equation*}
$$

(b) Evaluate I_{2}, giving your answer correct to three decimal places.
6. (a) The curve C has parametric equations

$$
x=\cos ^{3} \theta, y=\sin ^{3} \theta, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}
$$

Show that

$$
\begin{equation*}
\sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}}=\frac{3}{2} \sin 2 \theta \tag{5}
\end{equation*}
$$

(b) (i) Find the arc length of C.
(ii) The curve C is rotated through 360° about the x-axis. Show that the curved surface area of the solid of revolution generated is given by

$$
6 \pi \int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \cos \theta \mathrm{~d} \theta
$$

Hence find this curved surface area.

TURN OVER FOR QUESTION 7

7.

Figure 1

Figure 1 above shows a sketch of the curve C_{1} with polar equation

$$
r=1-\theta, \quad 0 \leqslant \theta \leqslant 1
$$

(a) (i) Given that P is the point on C_{1} at which the tangent to C_{1} is parallel to the initial line, show that the θ coordinate of P satisfies the equation

$$
\theta+\tan \theta=1 \text {. }
$$

(ii) Show that the area of the region enclosed by C_{1} and the initial line is $\frac{1}{6}$.
(b)

Figure 2

Figure 2 above shows a sketch of the curve C_{1} and part of the curve C_{2} with polar equation

$$
r=2 \theta^{2}, \quad 0 \leqslant \theta \leqslant 1 .
$$

(i) Find the polar coordinates of Q, the point of intersection of C_{1} and C_{2}.
(ii) Find the area of the region, shaded in Figure 2, enclosed by C_{2} and the straight line $O Q$.

