CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol
Uwch Gyfrannol/Uwch

978/01
MATHEMATICS FP2
Further Pure Mathematics
A.M. FRIDAY, 22 June 2007
(1 $1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use the substitution $x=y^{2}$ to evaluate the integral

$$
\int_{1}^{4} \frac{\mathrm{~d} x}{\sqrt{x(9-x)}}
$$

giving your answer correct to two significant figures.
2. Find the two square roots of the complex number $1+\sqrt{3} \mathrm{i}$. Give your answers in the form $x+\mathrm{i} y$.
3. Let

$$
f(x)=\frac{(x+1)(x+2)}{(x-1)\left(x^{2}+1\right)} .
$$

(a) Express $f(x)$ in partial fractions.
(b) Find $\int f(x) \mathrm{d} x$.
4. Find the general solution of the equation

$$
\begin{equation*}
\sin 2 \theta+\sin 4 \theta=\cos \theta \tag{9}
\end{equation*}
$$

5. \quad The ellipse E has equation

$$
16 x^{2}+25 y^{2}=400
$$

(a) Find the coordinates of the foci of E.
(b) Show that the point P with coordinates $(5 \cos \theta, 4 \sin \theta)$ lies on E.
(c) (i) Show that the equation of the normal to E at P is

$$
4 y \cos \theta-5 x \sin \theta+9 \sin \theta \cos \theta=0
$$

(ii) This normal intersects the x-axis at Q and the y-axis at R. Show that the locus of M, the mid-point of $Q R$, is an ellipse.
[10]
6. The function f is defined by

$$
f(x)=\frac{x^{2}+4}{x} .
$$

(a) Find the coordinates of the stationary points on the graph of f.
(b) Find the equation of each of the two asymptotes.
(c) Sketch the graph of f.
(d) Find $f(A)$ where A is the interval $[1,5]$.
7. (a) Given that

$$
z=\cos \theta+i \sin \theta
$$

use de Moivre's Theorem to show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

for all positive integers n.
(b) Hence by expanding $\left(z+\frac{1}{z}\right)^{5}$, show that

$$
\cos ^{5} \theta=a \cos 5 \theta+b \cos 3 \theta+c \cos \theta
$$

where a, b and c are constants to be determined.
8. The function f is defined on the domain $(0,2)$ by

$$
\begin{array}{ll}
f(x)=4 x^{2} & \text { for } 0<x<1 \\
f(x)=(x+1)^{2} & \text { for } 1 \leqslant x<2
\end{array}
$$

(a) Determine whether or not f is continuous when $x=1$.
(b) Show that f is a strictly increasing function.
(c) Obtain an expression for $f^{-1}(x)$ on each part of its domain.

