WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced Subsidiary/Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

978/01

MATHEMATICS FP2

Further Pure Mathematics

A.M. FRIDAY, 22 June 2007

 $(1\frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use the substitution $x = y^2$ to evaluate the integral

$$\int_{-1}^{4} \frac{\mathrm{d}x}{\sqrt{x(9-x)}},$$

giving your answer correct to two significant figures.

2. Find the two square roots of the complex number $1 + \sqrt{3}i$. Give your answers in the form x + iy. [6]

3. Let
$$f(x) = \frac{(x+1)(x+2)}{(x-1)(x^2+1)}$$

- (a) Express f(x) in partial fractions.[5](b) Find $\int f(x) dx.$ [4]
- 4. Find the general solution of the equation

$$\sin 2\theta + \sin 4\theta = \cos \theta.$$
 [9]

[6]

[4]

5. The ellipse *E* has equation

$$16x^2 + 25y^2 = 400.$$

- (a) Find the coordinates of the foci of E.
- (b) Show that the point P with coordinates $(5\cos\theta, 4\sin\theta)$ lies on E. [1]
- (c) (i) Show that the equation of the normal to E at P is

 $4y\cos\theta - 5x\sin\theta + 9\sin\theta\cos\theta = 0.$

(ii) This normal intersects the x-axis at Q and the y-axis at R. Show that the locus of M, the mid-point of QR, is an ellipse. [10]

6. The function f is defined by

$$f(x) = \frac{x^2 + 4}{x}.$$

(<i>a</i>)	Find the coordinates of the stationary points on the graph of f .	[4]
<i>(b)</i>	Find the equation of each of the two asymptotes.	[2]
(c)	Sketch the graph of <i>f</i> .	[2]
(<i>d</i>)	Find $f(A)$ where A is the interval [1, 5].	[4]

7. (a) Given that

$$z = \cos\theta + i\sin\theta$$
,

use de Moivre's Theorem to show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

[3]

[5]

for all positive integers n.

(b) Hence by expanding
$$\left(z + \frac{1}{z}\right)^5$$
, show that
 $\cos^5\theta = a\cos 5\theta + b\cos 3\theta + c\cos \theta$

where a, b and c are constants to be determined.

8. The function f is defined on the domain (0, 2) by

 $f(x) = 4x^2$ for 0 < x < 1, $f(x) = (x+1)^2$ for $1 \le x < 2$.

(a)	Determine whether or not f is continuous when $x = 1$.	[2]
(b)	Show that f is a strictly increasing function.	[2]
(c)	Obtain an expression for $f^{-1}(x)$ on each part of its domain.	[6]