CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

978/01

## MATHEMATICS FP2

Further Pure Mathematics
A.M. MONDAY, 19 June 2006
( $1 \frac{1}{2}$ hours)

## ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.


## INSTRUCTIONS TO CANDIDATES

Answer all questions.

## INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function $f$ is defined as follows.

$$
\begin{array}{ll}
f(x)=x & \text { for } x<0 \\
f(x)=\sin x & \text { for } x \geqslant 0 .
\end{array}
$$

Determine whether or not
(i) the function $f$,
(ii) its derivative $f^{\prime}$
is continuous when $x=0$.
2. Find the three cube roots of the complex number i. Give your answers in the form $x+\mathrm{i} y$.
3. The function $f$ is defined on the domain $(-\infty, 0) \cup(0, \infty)$ by

$$
f(x)=\frac{1}{x\left(x^{2}+1\right)} .
$$

(a) Show that $f$ is strictly decreasing over the interval $(0, \infty)$.
(b) State, giving a reason, whether $f$ is even or odd or neither even nor odd.
(c) State the equation of each of the asymptotes on the graph of $f$.
(d) Sketch the graph of $f$.
4. A hyperbola has equation

$$
2 x^{2}-4 x-y^{2}-4 y=4
$$

(a) Find the coordinates of the centre of the hyperbola.
(b) Find the coordinates of the foci and the equations of the directrices.
5. By putting $t=\tan \left(\frac{\theta}{2}\right)$, find the general solution of the equation

$$
\begin{equation*}
3 \cos \theta+4 \sin \theta=3-\tan \left(\frac{\theta}{2}\right) . \tag{9}
\end{equation*}
$$

6. (a) Use mathematical induction to prove that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta
$$

where $n$ is a positive integer.
(b) Use the result in (a) with $n=5$ to show that

$$
\sin 5 \theta=a \sin ^{5} \theta-b \sin ^{3} \theta+c \sin \theta
$$

where $a, b, c$ are positive integers to be found.
7. (a) Express

$$
\frac{x}{(x+2)\left(x^{2}+4\right)}
$$

in partial fractions.
(b) Hence evaluate the integral

$$
\int_{2}^{3} \frac{x}{(x+2)\left(x^{2}+4\right)} \mathrm{d} x
$$

giving your answer correct to three decimal places.
8. The line $y=m(x-2)$ intersects the circle $x^{2}+y^{2}=1$ at the points $A$ and $B$.
(a) Show that the coordinates of $M$, the mid-point of $A B$, are

$$
\begin{equation*}
\left(\frac{2 m^{2}}{1+m^{2}},-\frac{2 m}{1+m^{2}}\right) . \tag{5}
\end{equation*}
$$

(b) Find the Cartesian equation of the locus of $M$ as $m$ varies.

