GCE AS/A level

978/01

MATHEMATICS FP2
 Further Pure Mathematics

A.M. WEDNESDAY, 18 June 2008
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. For each of the following functions state, with a reason, whether it is even, odd or neither even nor odd.
(a) $\frac{x}{x^{2}+1}$
(b) $\mathrm{e}^{x}+1$
2. The function f is defined by

$$
\begin{array}{ll}
f(x)=1+a x^{3} & \text { for } x<2 \\
f(x)=b x^{2}-3 & \text { for } x \geqslant 2 .
\end{array}
$$

Given that both f and its derivative f^{\prime} are continuous at $x=2$, find the values of the constants a and b.
3. (a) Using the substitution $u=x^{2}$, evaluate the integral

$$
\begin{equation*}
\int_{0}^{\sqrt{3}} \frac{x \mathrm{~d} x}{\left(9+x^{4}\right)} \tag{5}
\end{equation*}
$$

giving your answer in the form $\frac{\pi}{k}$, where k is an integer.
(b) Evaluate the integral

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{25-9 x^{2}}} \tag{4}
\end{equation*}
$$

4. Consider the equation

$$
2 \sin \theta+3 \cos \theta=1 .
$$

(a) Putting $t=\tan \left(\frac{\theta}{2}\right)$, show that

$$
\begin{equation*}
2 t^{2}-2 t-1=0 \tag{3}
\end{equation*}
$$

(b) Hence find the general solution, in radians, of the above trigonometric equation.
5. (a) Show that the equation of the normal to the parabola $y^{2}=4 a x$ at the point $P\left(a p^{2}, 2 a p\right)$ is

$$
\begin{equation*}
y+p x=a p\left(2+p^{2}\right) . \tag{4}
\end{equation*}
$$

(b) This normal meets the x-axis at Q and the mid-point of $P Q$ is R.
(i) Find the coordinates of R.
(ii) The locus of R as p varies is a parabola. Find the equation of this parabola and the coordinates of its focus.
6. (a) Given that

$$
z=\cos \theta+i \sin \theta,
$$

show that

$$
\begin{equation*}
z^{n}-z^{-n}=2 \mathrm{i} \sin n \theta . \tag{3}
\end{equation*}
$$

(b) Expand $\left(z-z^{-1}\right)^{3}$ and hence show that

$$
\begin{equation*}
\sin ^{3} \theta=a \sin 3 \theta+b \sin \theta \tag{5}
\end{equation*}
$$

where the values of the constants a and b are to be determined.
7. The function f is defined by

$$
f(x)=\frac{5-3 x}{(x-1)(x-3)} .
$$

(a) Express $f(x)$ in partial fractions.
(b) Obtain an expression for $f^{\prime}(x)$ and hence show that there are no stationary points on the graph of f.
(c) Sketch the graph of f. State
(i) the coordinates of all the points of intersection of the graph and the coordinate axes,
(ii) the equations of all the asymptotes.
(d) Find $f^{-1}(A)$ where A is the interval $(0,1)$.
8. (a) Find the modulus and argument of the complex number 8 i .
(b) Hence find the three cube roots of 8i, giving your answers in the form $x+\mathrm{i} y$.

