GCE AS/A level

978/01

MATHEMATICS FP2
 Further Pure Mathematics

P.M. FRIDAY, 19 June 2009
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The functions f, g and h are defined as follows:

$$
\begin{align*}
& f(x)=\sin x \\
& g(x)=|x| \\
& h(x)=\frac{1}{x} \tag{2}
\end{align*}
$$

(a) State, with a reason, which one of the above functions is not continuous.
(b) State, with a reason, whether
(i) g is even or odd,
(ii) h is even or odd.
2. Using the substitution $u=\tan x$, evaluate the integral

$$
\int_{0}^{\frac{\pi}{6}} \frac{\sec ^{2} x}{\sqrt{3-\sec ^{2} x}} \mathrm{~d} x
$$

Explain briefly why the integral could not be evaluated if the upper limit were changed to $\frac{\pi}{3}$.
3. Giving your answers in the form $r(\cos \theta+\operatorname{isin} \theta)$, find the fourth roots of the complex number $-8+8 \sqrt{3} \mathrm{i}$.
4. Find the general solution to the equation

$$
\begin{equation*}
\sin \theta+\sin 2 \theta+\sin 3 \theta=0 \tag{7}
\end{equation*}
$$

5. The function f is defined by

$$
f(x)=\frac{1}{(x+1)(x+2)(x+3)} .
$$

(a) Express $f(x)$ in partial fractions.
(b) Evaluate the integral

$$
\begin{equation*}
\int_{0}^{5} f(x) \mathrm{d} x \tag{5}
\end{equation*}
$$

giving your answer in the form $\ln \left(\frac{m}{n}\right)$ where m, n are integers.
6. \quad The ellipse E has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

(a) Show that the equation of the tangent to E at the point $(a \cos \theta, b \sin \theta)$ is

$$
\begin{equation*}
b x \cos \theta+a y \sin \theta=a b . \tag{5}
\end{equation*}
$$

(b) This tangent meets the coordinate axes at P and Q, and the mid-point of $P Q$ is R. Find the Cartesian equation of the locus of R as θ varies.
7. (a) Given that

$$
z=\cos \theta+\operatorname{isin} \theta
$$

show that

$$
\begin{equation*}
z^{n}+z^{-n}=2 \cos n \theta \tag{3}
\end{equation*}
$$

(b) Hence solve the equation

$$
\begin{equation*}
z^{2}-2 z+3-2 z^{-1}+z^{-2}=0 \tag{7}
\end{equation*}
$$

8. The function f is defined by

$$
f(x)=\frac{x(x+3)}{x-1} .
$$

(a) Show that $f(x)$ can be written in the form

$$
a x+b+\frac{c}{x-1}
$$

where a, b, c are constants to be found.
(b) Find the coordinates of the stationary points on the graph of f.
(c) State the equation of each of the asymptotes on the graph of f and sketch the graph of f.
(d) Find $f^{-1}(A)$, where A is the interval $[0,10]$.

