CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

977/01

MATHEMATICS FP1

Further Pure Mathematics
P.M. TUESDAY, 23 January 2007
($1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Find an expression, in terms of n, for the sum of the series

$$
1.2 \cdot 3+2.3 \cdot 5+3.4 .7+\ldots+n(n+1)(2 n+1) .
$$

Express your answer as a product of linear factors.
2. (a) Find the inverse of the following matrix.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 4 & 2
\end{array}\right]
$$

(b) Hence solve the equations

$$
\begin{array}{r}
x+2 y+z=1 \\
2 x+3 y+z=4 \\
3 x+4 y+2 z=4 . \tag{2}
\end{array}
$$

3. (a) Showing your working, simplify the expression

$$
\frac{(3+4 i)(1+2 \mathrm{i})}{1+3 \mathrm{i}}
$$

giving your answer in the form $x+$ iy.
(b) Write down, in terms of $\arg \left(z_{1}\right)$ and $\arg \left(z_{2}\right)$,
(i) $\arg \left(z_{1} z_{2}\right)$,
(ii) $\arg \left(\frac{z_{1}}{z_{2}}\right)$.
(c) Use the results in (a) and (b) to show that

$$
\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1} 2-\tan ^{-1} 3=\frac{\pi}{k}
$$

where k is a positive integer whose value is to be determined.
4. Use mathematical induction to show that $6^{n}+4$ is divisible by 5 for all positive integers n.
5. Consider the simultaneous equations

$$
\begin{aligned}
x+2 y-z & =2 \\
2 x-y+z & =3 \\
4 x-7 y+5 z & =5 .
\end{aligned}
$$

Given that these equations do not have a unique solution,
(a) show that the equations are consistent.
(b) find the general solution to the equations.
6. The function f is defined on the domain (0 , ¥oby

$$
f(x)=x^{-\ln x}
$$

(a) Find the coordinates of the stationary point on the graph of f.
(b) Determine the nature of this stationary point.
7. The roots of the cubic equation

$$
\begin{equation*}
x^{3}+2 x^{2}+3 x-4=0 \tag{11}
\end{equation*}
$$

are denoted by α, β, γ. Find the cubic equation whose roots are $\frac{\beta \gamma}{\alpha}, \frac{\gamma \alpha}{\beta}, \frac{\alpha \beta}{\gamma}$.
8. The transformation T in the plane consists of an anticlockwise rotation about the origin through an angle θ followed by a translation in which the point (x, y) is transformed to the point $(x+h, y+k)$.
(a) Find the 3×3 matrix corresponding to T.
(b) Given that T maps the point $(0,1)$ to $(1,2)$ and the point $(3,0)$ to $(4,3)$, find the values of h, k and θ.
9. The complex number z is represented by the point $P(x, y)$ in an Argand diagram.
(a) Given that

$$
|z-3|=|z+\mathrm{i}|,
$$

find the Cartesian equation of the locus of P.
(b) Find the coordinates of the two points lying on this locus for which $|z|=4$.

