Co-ordinate Geometry
 THE EQUATION OF STRAIGHT LINES

This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates.

The Gradient of a Line.

As we have met the gradient of a line at GCSE but we will now formally define it as the "rate of change of y with respect to x ".
It is visually the steepness or slope of the line and is often denoted by the letter " m ". (Due to the idea being developed by a French man named Rene Decartes. The French for to climb is MONTER)

$$
\text { Gradient }(m)=\frac{\text { change in } y}{\text { Change in } x}
$$

Consider
Now consider the general situation.

OR
$\operatorname{GRADIENT}(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Where two co-ordinate pairs are known.

Example 1.

Find the gradient of the line adjoining $A=(2,4)$ and $B=(5,9)$.

Decide which point will represent $\left(x_{2}, y_{2}\right)$
and which will represent (x_{1}, y_{1})
They must work as a pair and must not be mixed up.
gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{4-9}{2-5}$
$m=\frac{-5}{-3}$
$m=5 / 3$.
N.B. The same gradient will result from the calculation if the co-ordinates were chosen the other way around. Try it and check!!!

Exercise.

Find the gradient of the line adjoining the following pairs of points.

	a	B
1.	$(-1,4)$	$(-3,-8)$
2.	$(-2,-5)$	$(3,-5)$
3.	$(-2,-5)$	$(-3,-3)$
4.	$(1,4)$	$(2,9)$
5.	$(2,5)$	$(6,6)$
6.	$(9,4)$	$(8,7)$
7.	$(3,8)$	$(-1,2)$
8.	$(4,3)$	$(-2,-3)$
9.	$(-2,5)$	$(3,1)$
10.	$(1,-4)$	$(6,2)$

Exercise solutions.
$6,0,-2,5,1 / 4,-3,3 / 2,1,-4 / 5,6 / 5$

The Equation of a Straight Line.

Any straight line can be represented by the general equation

$$
a x+b y+c=0 \text { where } a, b \text {, and } c \text { are constants. }
$$

In this form it is difficult to see the gradient and intercept value. These are important as they allow us to sketch the function quickly.

Another way of representing a straight line is by the general equation

$$
y=m x+c,
$$

where m represents gradient and c represents the intercept of the function.

We already know that $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ denoting $\left(x_{2}, y_{2}\right)$ by just (x, y) and By rearranging this gradient formula we get a third general formula for straight line function. The IMPORTANT VERSION of the EQUATION OF A STRAIGHT LINE is obtained.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Where ($\mathrm{x}_{1}, \mathrm{y}_{1}$) represents any point on the line

Example 1.

Find the equation of the line passing through the points $(2,3)$ and $(3,7)$.

Method.

1. Find the gradient.

$$
\begin{aligned}
& \mathrm{m}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{x}-\mathrm{x}_{1}} \\
& \mathrm{~m}=\frac{7-3}{3-2} \\
& \mathrm{~m}=4
\end{aligned}
$$

2. Using the general equation find the required straight line solution.
(using point $(2,3)$)

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=4(x-2) \\
& y-3=4 x-8 \\
& \text { OR } \\
& y=4 x-5
\end{aligned}
$$

Example 2.

Find the equation of the line with gradient $-1 / 3$ which passes through point (1, -2)

Since $m=-1 / 3$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-2)=\frac{-1}{3}(x-1) \\
& 3(y+2)=-x+1 \\
& 3 y+6=-x+1 \\
& 3 y=-x-5 \\
& \text { OR } \\
& y=\frac{-x-5}{3}
\end{aligned}
$$

EXAMPLE 3

$A B C D$ is a rectangle. A has co-ordinates $(4,6), B_{1}(-2,4)$ and $C_{1}(-1,1)$.
(a) Find the equation of $A D$.
(b) Find the equation of $C D$.

There seems to be a problem in that we do not know the coordinates of D!!
However we do know that we have a rectangle and so we have PARALLEL LINES.

IT IS A SIMPLE FACT THAT PARALLEL LINES HAVE EQUAL GRADIENTS.
 A (4,6)

B $(-2,4)$

C $(-1,1)$

It is unimportant where the x and y axes are!

We can see from this that BC is PARALLEL to AD
And $A B$ is PARALLEL to $D C$

We will use this to answer the problem

ANSWER:

TO FIND THE EQUATION OF AD

TO FIND THE EQUATION OF CD

The Distance Between Two Points.

Let $A=\left(x_{2}, y_{2}\right), B=\left(x_{1}, y_{1}\right)$ and C is a point to create a right-angled triangle.

We can see that by using Pythagoras Theorem that;

$$
A B^{2}=B C^{2}+A C^{2}
$$

But, length $B C$ is $\left(x_{2}-x_{1}\right)$ and length $A C$ is $\left(y_{2}-y_{1}\right)$ Therefore

$$
\begin{aligned}
& A B^{2}=\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{2}+\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)^{2} \\
& A B=\sqrt{ }\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)^{2}+\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)^{2}
\end{aligned}
$$

The distance between two $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and (x, y) points is found by using

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The Mid-Point of a Line.

Therefore the co-ordinate of the mid-point of AB is given by

$$
\left\{\underline{\mathbf{x}_{2}+\mathbf{x}_{1}}, \underline{y}_{2} \frac{+\mathbf{y}_{1}}{2}\right\}
$$

Example.

a) Find the distance from the point $A=(-7,1)$ and $B=(7,6)$.
b) Write down the co-ordinates of M the mid point of $A B$.

$$
\begin{gathered}
A B=\sqrt{ }\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2} \\
A B=\sqrt{ }(7-(-7))^{2}+(6-1)^{2} \\
A B=\sqrt{ } 221 \\
A B=14.87 \text { units. } \\
M=\frac{x_{2}}{2}+x_{1}, \frac{y_{2}}{2}+y_{1} \\
2
\end{gathered}
$$

$M=(0,3.5)$

Exercise

a) Find the equation of the straight line passing through the following points A and B .
b) Find the distance AB for questions 1,3 and 5
c) Find M the mid point of $A B$

	A		B	
1.	$(2,4)$		$(3,7)$	
2.	$(-1,2)$		$(1,-4)$	
3.	$(-2,-3)$		$(7,2)$	
4.	$(3,-1)$		$(-2,3)$	
5.	$(2,0)$		$(-1,3)$	

Parallel and Perpendicular Lines.

Parallel Lines. As we have already seen

Any two lines that are parallel to each other have equal inclines to the x axis.

If they have equal inclines then the rate of change of y with respect to x must be equal

For lines to be parallel they must have equal gradients.

Example 1.

Given $A=(-2,0), B=(0,1), C=(3,-4)$ and $D=(5,-3)$.
Show that $A B$ is parallel to $C D$.

Gradient AB

$\mathrm{m}=\mathbf{y}_{\mathbf{2}}-\mathbf{x}_{\mathbf{2}}-\mathbf{y}_{\mathbf{1}}$
$\mathrm{m}=\frac{\mathbf{1 - 0}}{\mathbf{0}-(-2)}$
$\mathrm{m}=1 / 2$

Gradient CD

$$
\mathrm{m}=\underset{\mathbf{x}_{2}-\mathbf{y}_{2}-\mathbf{x}_{1}}{\underline{1}}
$$

$$
m=\frac{-4-(-3)}{3-5}
$$

$$
m=-1 /-2
$$

$$
\mathrm{m}=1 / 2
$$

Since the gradients are equal, we can conclude that the lines $A B$ and $C D$ are parallel.

Example 2.

Show that the points $A=(-2,5), B=(7,2), C=(3,-2)$ and $D=(-6,1)$ are vertices of a parallelogram.

A parallelogram has two pairs of parallel sides by definition.	Gradient AB	Gradient BC
	$m=y_{2}-y_{1}$	$m=\frac{-2-2}{3-7}$
	$x_{2}-x_{1}$	3-7
	$m=5-2$	$m=1$
That is $A B$ must be parallel to $C D$	- 2-7	
and $B C$ must be parallel to $A D$.	$m=-1 / 3$	

Gradient CD Gradient AD

$$
\begin{array}{ll}
m=\frac{-2-1}{3-(-6)} & m=\frac{5-1}{-2-(-6)} \\
m=-1 / 3 & m=1 \\
\text { same as } A B & \text { same as } B C
\end{array}
$$

Therefore a parallelogram!

Perpendicular Lines.

The Proof is not necessary but have a look anyway.
Consider the diagram below.

Lines OP and OR are perpendicular with gradients m_{1} and m_{2} respectively.

If OP makes an angle of θ with the x axis then OR makes an angle of θ with the y axis.

We can see that triangles OPQ and OSR are similar.

$$
\text { Therefore } \frac{\mathrm{PQ}}{\mathrm{OQ}}=\underline{\mathrm{SR}}
$$

But the gradient of $O P=\frac{P Q}{O Q}$

And the gradient of $O R=-\frac{O S}{R S}$

$$
\Rightarrow \quad m_{1}=\underline{-1}
$$

But the gradient of $O P=m_{1}$, and the gradient of $O R=m_{2}$.

For lines to be perpendicular the products of their gradients must be -1 .

It follows that if the gradient of one line is m then the gradient of any perpendicular line is -1 .

Example 1.

Show that the lines $4 y-3 x-18=0$ and $3 y+4 x-1=0$ are perpendicular.
For lines to be perpendicular the products of their gradients must be -1 . We find the gradient by re arranging the equation into the form $y=m x+c$ Line 1; $\quad y=\frac{3 x+18}{4} \quad$ gradient $=3 / 4$

Line 2; $y=\frac{-4 x+1}{3} \quad$ gradient $=-4 / 3$

Exercise.

1. Show that the lines $y-2 x-1=0$ and $6 y+3 x-5=0$ are perpendicular.
2. Test whether the lines $5 y-7 x-6=0$ and $6 y+5 x+3=0$ are perpendicular.
3. Find the equation of a straight line which is perpendicular to the line
4. $y=2 x+1$ which passes through the point $(3,-2)$.
5. Find the equation of a straight line which is parallel to the line $y=-5 / 4 x+2$ which passes through the point $(4,3)$.
6. Find the equation of a straight line passing through $(5,2)$ which is perpendicular to the line $2 x+3 y-4=0$.

Equation Revision Sheet.

1. For the following equations, state
a) the gradient of the line.
b) the gradient of the perpendicular to the line.

$$
\begin{aligned}
& 4 y=x+5 \\
& 2 y=4 / 5 x+3 \\
& 3 x+5 y=6 \\
& 4-5 y=4 x \\
& 7 y-5 / 3 x=8
\end{aligned}
$$

2. Find the equation of the line passing through $(4,3)$ which is parallel to $2 x+3 y=7$.
3. Find the equation of a line which passes through $(4,3)$ which is perpendicular to the line $2 x+3 y=7$.
4. Find the equation of a line which passes through $(1,4)$ which is perpendicular to the line $3 y+4 x=7$.
5. Find the equation of a line which passes through $(2,2)$ which is parallel to the line $5 x-2 y=4$.
6. Find the equation of a line which passes through $(1,6)$ which is perpendicular to the line $3 x=2-7 y$.
7. $A B C D$ is a parallelogram, where $A=(-4,1), B=(5,-2)$ and $C=(3,3)$. Calculate:
a) The gradient of $A B$ and $B C$.
b) The equations of the lines $A D$ and $C D$.
c) The co-ordinates of D.
d) The co-ordinates of the points of intersection of $A C$ and $B D$.
