GCE AS/A level

976/01

MATHEMATICS C4
 Pure Mathematics

P.M. MONDAY, 15 June 2009
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$
f(x)=\frac{3 x}{(1+x)^{2}(2+x)},
$$

(a) express $f(x)$ in terms of partial fractions,
(b) evaluate

$$
\int_{0}^{1} f(x) \mathrm{d} x,
$$

giving your answer correct to three decimal places.
2. Find all the values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying $3 \sin 2 \theta=2 \sin \theta$.
3. (a) Express $\cos \theta+\sqrt{3} \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
\cos \theta+\sqrt{3} \sin \theta=1 \tag{4}
\end{equation*}
$$

4. The region bounded by the curve $y=\cos 2 x$, the x-axis and the lines $x=0$ and $x=\frac{\pi}{8}$, is rotated about the x-axis through four right-angles. Find the volume of the solid generated.
5. The parametric equations of the curve C are $x=t^{2}, y=t^{3}$. The point P has parameter p.
(a) Show that the equation of the tangent to C at the point P is $3 p x-2 y=p^{3}$.
(b) The tangent to C at the point P intersects C again at the point $Q\left(q^{2}, q^{3}\right)$. Given that $p=2$, show that q satisfies the equation $q^{3}-3 q^{2}+4=0$ and determine the value of q.
6. (a) Find $\int(x+3) \mathrm{e}^{2 x} \mathrm{~d} x$.
(b) Use the substitution $u=2 \cos x+1$ to evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\sqrt{(2 \cos x+1)}} \mathrm{d} x \tag{5}
\end{equation*}
$$

7. The value of an electronic component may be modelled as a continuous variable. The value of the component at time t years is $£ P$. The rate of decrease of P is directly proportional to P^{3}.
(a) Write down a differential equation that is satisfied by P.
(b) The value of the component when $t=0$ is $£ 20$. Show that

$$
\begin{equation*}
\frac{1}{P^{2}}=\frac{1}{400}+A t \tag{5}
\end{equation*}
$$

where A is a positive constant.
(c) Given that the value of the component when $t=1$ is $£ 10$, find the time when the value is $£ 5$.
8. (a) The position vectors of the points A and B are given by

$$
\mathbf{a}=3 \mathbf{i}+4 \mathbf{j}+7 \mathbf{k}, \quad \mathbf{b}=4 \mathbf{i}+2 \mathbf{j}+10 \mathbf{k} .
$$

(i) Find the vector equation of the line $A B$.
(ii) The vector equation of the line L is

$$
\mathbf{r}=5 \mathbf{i}+6 \mathbf{j}+\mathbf{k}+\mu(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k})
$$

Show that $A B$ and L intersect and find the position vector of the point of intersection.
(b) Show that the vectors $3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ are perpendicular.
9. Expand $(1+4 x)^{\frac{1}{2}}$ in ascending powers of x as far as the term in x^{2}. State the range of values of x for which your expansion is valid.
Expand $\left(1+4 k+16 k^{2}\right)^{\frac{1}{2}}$ in ascending powers of k as far as the term in k^{2}.
10. Complete the following proof by contradiction to show that $\sqrt{3}$ is irrational.

Assume that $\sqrt{3}$ is rational. Then $\sqrt{3}$ may be written in the form $\frac{a}{b}$ where a and b are integers having no common factors.
$\therefore a^{2}=3 b^{2}$.
$\therefore a^{2}$ has a factor 3 .
$\therefore a$ has a factor 3 so that $a=3 k$, where k is an integer.

