GCE AS/A level

976/01

MATHEMATICS C4
 Pure Mathematics

A.M. THURSDAY, 12 June 2008
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$
\begin{equation*}
f(x)=\frac{1}{x^{2}(2 x-1)}, \tag{4}
\end{equation*}
$$

(a) express $f(x)$ in partial fractions,
(b) find $\int f(x) \mathrm{d} x$.
2. Find the equation of the normal to the curve

$$
\begin{equation*}
x^{2}+x y+2 y^{2}=8 \tag{5}
\end{equation*}
$$

at the point $(-3,1)$.
3. (a) Express $3 \cos x+2 \sin x$ in the form $R \cos (x-\alpha)$, where R and α are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(b) Find all values of x between 0° and 360° satisfying

$$
\begin{equation*}
3 \cos x+2 \sin x=1 \tag{3}
\end{equation*}
$$

4. The region R is bounded by the curve $y=x+\frac{3}{\sqrt{x}}$, the x-axis and the lines $x=1, x=4$. Find the volume generated when R is rotated through four right-angles about the x-axis.
5. The parametric equations of the curve C are $x=4 \sin t, y=\cos 2 t$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying your answer as much as possible.
(b) Show that the equation of the tangent to C at the point P with parameter p is

$$
\begin{equation*}
x \sin p+y=1+2 \sin ^{2} p \tag{3}
\end{equation*}
$$

6. (a) Find $\int(3 x+1) \mathrm{e}^{2 x} \mathrm{~d} x$.
(b) Use the substitution $x=3 \sin \theta$ to show that

$$
\int_{1.5}^{3} \sqrt{9-x^{2}} \mathrm{~d} x=\int_{a}^{b} k \cos ^{2} \theta \mathrm{~d} \theta
$$

where the values of the constants a, b and k are to be found.
Hence evaluate $\int_{1.5}^{3} \sqrt{9-x^{2}} \mathrm{~d} x$.
7. A neglected large lawn contains a certain type of weed. The area of the lawn covered by the weed at time t years is $W \mathrm{~m}^{2}$. The rate of increase of W is directly proportional to W.
(a) Write down a differential equation that is satisfied by W.
(b) The area of the lawn covered by the weed initially is $0 \cdot 10 \mathrm{~m}^{2}$ and one year later the area covered is $2.01 \mathrm{~m}^{2}$. Find an expression for W in terms of t.
8. The position vectors of the points A and B are given by

$$
\mathbf{a}=4 \mathbf{i}-\mathbf{j}+\mathbf{k}, \quad \mathbf{b}=5 \mathbf{i}+\mathbf{j}-\mathbf{k}
$$

(a) (i) Write down the vector $\mathbf{A B}$.
(ii) Find the vector equation of the line $A B$.

The vector equation of the line L is

$$
\mathbf{r}=\mathbf{i}+3 \mathbf{j}-3 \mathbf{k}+\mu(\mathbf{i}-\mathbf{j}+\mathbf{k})
$$

(b) Given that the lines $A B$ and L intersect, find the position vector of the point of intersection.
(c) Find the angle between the line $A B$ and the line L.
9. Expand $\frac{1+3 x}{\sqrt{1-2 x}}$ in ascending powers of x up to and including the term in x^{2}. State the range of x for which the expansion is valid.
10. Prove by contradiction the following proposition.

When x is real and positive,

$$
x+\frac{49}{x} \geqslant 14 .
$$

The first line of the proof is given below.
Assume that there is a positive and real value of x such that

$$
\begin{equation*}
x+\frac{49}{x}<14 . \tag{4}
\end{equation*}
$$

