WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced Subsidiary/Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

975/01

MATHEMATICS C3

Pure Mathematics

P.M. TUESDAY, 5 June 2007

 $(1\frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$\int_{1}^{1\cdot 4} \frac{1}{2 + \ln x} \, \mathrm{d}x \, .$$

Show your working and give your answer correct to three decimal places.

2. (a) Show, by counter-example, that the statement

$$\cos 2\theta \equiv 1 - 2\cos^2 \theta$$

is false.

(b) Find all values of θ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$ satisfying

$$\cot^2\theta = 7 - 2\csc\theta.$$
 [6]

[4]

[2]

[5]

- 3. (a) A function is defined parametrically by $x = 5t^2$, $y = t^5 + \frac{20t^3}{3}$.
 - (i) Find $\frac{dy}{dx}$ in terms of *t*. (ii) Given that $\frac{dy}{dx} = 1$, show that $t^3 + 4t - 2 = 0$.
 - (b) Show that the equation

$$t^3 + 4t - 2 = 0$$

has a root α between 0 and 1.

The recurrence relation

$$t_{n+1} = \frac{2 - t_n^3}{4}$$

with $t_0 = 0.5$ can be used to find α . Find and record the values of t_1 , t_2 , t_3 , t_4 . Write down the value of t_4 correct to four decimal places and prove that this value is the value of α correct to four decimal places. [7]

- 4. (a) Sketch the graphs of $y = x^2 4$ and $y = |x^2 4|$, indicating the points where the graphs meet the *x*-axis and the *y*-axis. [4]
 - (b) Solve the inequality

$$|5x-3| > 4.$$
 [3]

 $3v^2 + x^2v^3 + x^4 - x^2 - 11 = 0$

5. Given that

find

the value of
$$\frac{dy}{dx}$$
 when $x = 2, y = -1.$ [4]

6. (a) Differentiate each of the following with respect to x and simplify your answers, wherever possible.

(i)
$$x^{2}\sin x$$
 (ii) $\ln(x^{2}+3)$ (iii) e^{9-2x} (iv) $\frac{4}{(3x+7)^{2}}$
(v) $\sin^{-1}3x$ [10]

(b) Given
$$y = \frac{1 + \tan x}{1 - \tan x} (\tan x \neq 1)$$
, show that $\frac{dy}{dx}$ is always positive. [4]

7. (a) Find (i)
$$\int \frac{1}{(5-2x)} dx$$
, (ii) $\int (3x+2)^{20} dx$,
(iii) $\int e^{7x} dx$. [7]

(b) Evaluate
$$\int_{0}^{\frac{\pi}{3}} \cos\left(3x + \frac{\pi}{3}\right) dx$$
 [4]

8. The functions f and g have domains $[0,\infty)$ and $(-\infty,\infty)$ respectively, and are defined by

$$f(x) = e^x,$$
$$g(x) = x^2 + 1.$$

- (a) Find the range of f and the range of g.
- (b) Find an expression for gf(x), simplifying your expression as much as possible. [2]

[2]

[2]

- (c) Write down the domain and range of gf.
- (d) Sketch, on the same diagram, the graphs of y = f(x) and y = gf(x) indicating where the graphs meet the y-axis. [5]
- 9. The function *f* has domain $x \ge 0$ and is defined by

$$f(x) = \frac{8}{x+2} \quad .$$

Find an expression for $f^{-1}(x)$ and write down the domain of f^{-1} . [4]