CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

975/01

MATHEMATICS C3

Pure Mathematics

P.M. TUESDAY, 5 June 2007
($1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$
\begin{equation*}
\int_{1}^{1 \cdot 4} \frac{1}{2+\ln x} d x \tag{4}
\end{equation*}
$$

Show your working and give your answer correct to three decimal places.
2. (a) Show, by counter-example, that the statement

$$
\cos 2 \theta \equiv 1-2 \cos ^{2} \theta
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
\cot ^{2} \theta=7-2 \operatorname{cosec} \theta \tag{6}
\end{equation*}
$$

3. (a) A function is defined parametrically by $x=5 t^{2}, y=t^{5}+\frac{20 t^{3}}{3}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$, show that $t^{3}+4 t-2=0$.
(b) Show that the equation

$$
t^{3}+4 t-2=0
$$

has a root α between 0 and 1 .
The recurrence relation

$$
t_{n+1}=\frac{2-t_{n}^{3}}{4}
$$

with $t_{0}=0.5$ can be used to find α. Find and record the values of $t_{1}, t_{2}, t_{3}, t_{4}$. Write down the value of t_{4} correct to four decimal places and prove that this value is the value of α correct to four decimal places.
4. (a) Sketch the graphs of $y=x^{2}-4$ and $y=\left|x^{2}-4\right|$, indicating the points where the graphs meet the x-axis and the y-axis.
(b) Solve the inequality

$$
\begin{equation*}
|5 x-3|>4 . \tag{3}
\end{equation*}
$$

5. Given that

$$
\begin{equation*}
3 y^{2}+x^{2} y^{3}+x^{4}-x^{2}-11=0, \tag{4}
\end{equation*}
$$

find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=2, y=-1$.
6. (a) Differentiate each of the following with respect to x and simplify your answers, wherever possible.
(i) $x^{2} \sin x$
(ii) $\ln \left(x^{2}+3\right)$
(iii) $\mathrm{e}^{9-2 x}$
(iv) $\frac{4}{(3 x+7)^{2}}$
(v) $\sin ^{-1} 3 x$
(b) Given $y=\frac{1+\tan x}{1-\tan x}(\tan x \neq 1)$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is always positive.
7. (a) Find
(i) $\int \frac{1}{(5-2 x)} \mathrm{d} x$,
(ii) $\int(3 x+2)^{20} \mathrm{~d} x$,
(iii) $\int \mathrm{e}^{7 x} \mathrm{~d} x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{3}} \cos \left(3 x+\frac{\pi}{3}\right) \mathrm{d} x$.
8. The functions f and g have domains $[0, \infty)$ and $(-\infty, \infty)$ respectively, and are defined by

$$
\begin{aligned}
& f(x)=\mathrm{e}^{x}, \\
& g(x)=x^{2}+1
\end{aligned}
$$

(a) Find the range of f and the range of g.
(b) Find an expression for $g f(x)$, simplifying your expression as much as possible.
(c) Write down the domain and range of $g f$.
(d) Sketch, on the same diagram, the graphs of $y=f(x)$ and $y=g f(x)$ indicating where the graphs meet the y-axis.
9. The function f has domain $x \geqslant 0$ and is defined by

$$
\begin{equation*}
f(x)=\frac{8}{x+2} . \tag{4}
\end{equation*}
$$

Find an expression for $f^{-1}(x)$ and write down the domain of f^{-1}.

