General Certificate of Education Advanced Subsidiary/Advanced

MATHEMATICS C3
 Pure Mathematics

A.M. FRIDAY, 11 January 2008
($1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$
\int_{0}^{0.8} \mathrm{e}^{x^{2}} \mathrm{~d} x
$$

Show your working and give your answer correct to four decimal places.
2. (a) Show, by counter-example, that the statement

$$
\sin 3 \theta \equiv 4 \sin \theta-3 \sin ^{3} \theta
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
\sec \theta=1-2 \tan ^{2} \theta \tag{6}
\end{equation*}
$$

3. (a) Given that $x=t^{4}+1, y=\mathrm{e}^{2 t}+5$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Given that $x^{4}+\sin y+x^{2} y^{3}=9$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
4. Show that the equation

$$
2 \ln (70+x)-x=0
$$

has a root α between 8 and 9 .
The recurrence relation

$$
x_{n+1}=2 \ln \left(70+x_{n}\right)
$$

with $x_{0}=8.8$ can be used to find α.
Find and record the values of x_{1}, x_{2}, x_{3}. Write down the value of x_{3} correct to four decimal places and prove that this value is the value of α correct to four decimal places.
5. Differentiate each of the following with respect to x, simplifying your answers wherever possible.
(a) $\frac{\ln x}{x^{2}}$
(b) $\cos ^{-1} 5 x$
(c) $\sqrt{1+6 x^{4}}$
(d) $x^{3} \tan 2 x$
[3],[2],[2],[3]
6. (a) (i) Sketch the graph of $y=\ln x$.
(ii) On a separate diagram, sketch the graph of $y=|\ln x|$.
(b) Solve $|3 x-2|<4$.
7. (a) Find (i) $\int \sqrt{2 x+3} \mathrm{~d} x$,
(ii) $\int \frac{3}{7 x+2} \mathrm{~d} x$,
(iii) $\quad \int 5 \mathrm{e}^{2 x-7} \mathrm{~d} x$.
(b) Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin \left(4 x+\frac{\pi}{6}\right) \mathrm{d} x$.
8. The diagram shows the graph of $y=f(x)$. The graph has its highest point at $(4,2)$ and it intersects the x-axis at the points $(0,0)$ and $(8,0)$.

(a) Sketch the graph of $y=2 f(x+3)$, indicating the coordinates of the highest point and of the points where the graph intersects the x-axis.
(b) On a separate diagram, sketch the graph of $y=f(2 x)+1$, indicating the coordinates of the highest point and of the point where the graph intersects the y-axis.
9. The functions f and g have domains $(0, \infty)$ and $(-\infty, \infty)$ respectively and are defined by

$$
\begin{aligned}
& f(x)=\ln x, \\
& g(x)=\mathrm{e}^{4 x} .
\end{aligned}
$$

Find and simplify an expression for
(a) $f g(x)$,
(b) $g f(x)$.
10. The function f has domain $(2, \infty)$ and is defined by

$$
f(x)=\frac{1}{\sqrt{x-2}}
$$

(a) Write down the range of f.
(b) Find an expression for $f^{-1}(x)$, stating the domain and range of f^{-1}.
(c) Show that the equation

$$
\begin{equation*}
f^{-1}(x)=-\frac{3}{x} \tag{4}
\end{equation*}
$$

has no solutions.

