GCE AS/A level

975/01

MATHEMATICS C3
 Pure Mathematics

A.M. THURSDAY, 15 January 2009
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$
\int_{0}^{\frac{2 \pi}{9}} \ln (\cos x) \mathrm{d} x
$$

Show your working and give your answer correct to four decimal places.
Deduce an approximate value for

$$
\begin{equation*}
\int_{0}^{\frac{2 \pi}{9}} \ln \left(\cos ^{2} x\right) \mathrm{d} x \tag{5}
\end{equation*}
$$

2. (a) Show, by counter-example, that the statement

$$
\cos 2 \theta \equiv 2 \cos ^{2} \theta-\sin ^{2} \theta
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
3 \tan ^{2} \theta=7+\sec \theta . \tag{6}
\end{equation*}
$$

3. (a) Given that $x^{2}+3 x y+2 y^{2}-2 x=13$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,2)$.
(b) Given that $x=2 \mathrm{e}^{t}+6, y=4 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}+1$, find the value of t when $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$, giving your answer correct to three decimal places.
4. (a) By sketching the graphs of $y=x^{3}$ and $y=4-x$, determine the number of real roots of the equation $x^{3}+x-4=0$.
(b) You may assume that the equation $x^{3}+x-4=0$ has a root α between 1 and 2. The recurrence relation

$$
x_{n+1}=\left(4-x_{n}\right)^{\frac{1}{3}}
$$

with $x_{0}=1.4$ can be used to find α. Find and record the values of $x_{1}, x_{2}, x_{3}, x_{4}$. Write down the value of x_{4} correct to four decimal places and prove that this value is the value of α correct to four decimal places.
5. (a) Differentiate each of the following with respect to x and simplify your answers, wherever possible.
(i) $\ln (\sin x)$
(ii) $\sin ^{-1}(4 x)$
(iii) $\frac{3 x^{2}+2}{x^{2}+5}$
(b) By first writing $y=\tan ^{-1} x$ as $x=\tan y$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
6. Solve the following.
(a) $\frac{2|x|+9}{|x|+1}=5$
(b) $|5 x+7| \leqslant 4$
7. (a) Find (i) $\int \frac{7}{6 x+5} \mathrm{~d} x$,
(ii) $\quad \int \cos 5 x \mathrm{~d} x$.
(b) Evaluate $\int_{0}^{1} \frac{9}{(2 x+1)^{2}} \mathrm{~d} x$.
8. Given that $f(x)=\ln x$, sketch the graphs of $y=f(x)$ and $y=-f(x+1)$ on the same diagram. Label the coordinates of the points of intersection with the x-axis and indicate the behaviour of the graphs for large positive and negative values of y.
9. The function f has domain $x \leqslant 0$ and is defined by $f(x)=5 x^{2}+4$.
(a) Find an expression for $f^{-1}(x)$.
(b) Write down the domain and range of f^{-1}.
10. The function f has domain $[1, \infty)$ and is defined by

$$
f(x)=2 x-k
$$

where k is a constant.
(a) Write down, in terms of k, the range of f.

The function g has domain $[0, \infty)$ and is defined by

$$
g(x)=3 x^{2}+4 .
$$

(b) Find the largest value of k that allows the function $g f$ to be formed.
(c) Given that $g f(2)=31$, find the value of k.

