

GCE AS/A level

975/01

MATHEMATICS C3 Pure Mathematics

A.M. THURSDAY, 15 January 2009 $1^{1}\!\!\!/_{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$\int_0^{\frac{2\pi}{9}} \ln(\cos x) \, \mathrm{d}x.$$

Show your working and give your answer correct to four decimal places.

Deduce an approximate value for

$$\int_{0}^{\frac{2\pi}{9}} \ln(\cos^2 x) \,\mathrm{d}x.$$
 [5]

2. (a) Show, by counter-example, that the statement

$$\cos 2\theta \equiv 2\cos^2\theta - \sin^2\theta$$

is false.

[2]

(b) Find all values of θ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$ satisfying

$$3\tan^2\theta = 7 + \sec\theta.$$
 [6]

3. (a) Given that
$$x^2 + 3xy + 2y^2 - 2x = 13$$
, find the value of $\frac{dy}{dx}$ at the point (1, 2). [4]

- (b) Given that $x = 2e^{t} + 6$, $y = 4e^{2t} + 3e^{t} + 1$, find the value of t when $\frac{dy}{dx} = 6$, giving your answer correct to three decimal places. [7]
- 4. (a) By sketching the graphs of $y = x^3$ and y = 4 x, determine the number of real roots of the equation $x^3 + x 4 = 0$. [3]
 - (b) You may assume that the equation $x^3 + x 4 = 0$ has a root α between 1 and 2. The recurrence relation

$$x_{n+1} = (4 - x_n)^{\frac{1}{3}}$$

with $x_0 = 1.4$ can be used to find α . Find and record the values of x_1, x_2, x_3, x_4 . Write down the value of x_4 correct to four decimal places and prove that this value is the value of α correct to four decimal places. [5]

- 5. (a) Differentiate each of the following with respect to x and simplify your answers, wherever possible.
 - (i) $\ln(\sin x)$ (ii) $\sin^{-1}(4x)$ (iii) $\frac{3x^2 + 2}{x^2 + 5}$ [8]
 - (b) By first writing $y = \tan^{-1}x$ as $x = \tan y$, find $\frac{dy}{dx}$ in terms of x. [4]

6. Solve the following.

$$\begin{array}{c} (a) & \frac{2 |x| + 9}{|x| + 1} = 5 \end{array}$$
[2]

$$(b) \quad | \ 5x + 7 \ | \le 4 \tag{3}$$

7. (a) Find (i)
$$\int \frac{7}{6x+5} dx$$
, (ii) $\int \cos 5x dx$. [4]

(b) Evaluate
$$\int_{0}^{1} \frac{9}{(2x+1)^2} dx$$
. [4]

- 8. Given that $f(x) = \ln x$, sketch the graphs of y = f(x) and y = -f(x + 1) on the same diagram. Label the coordinates of the points of intersection with the *x*-axis and indicate the behaviour of the graphs for large positive and negative values of *y*. [5]
- 9. The function f has domain $x \leq 0$ and is defined by $f(x) = 5x^2 + 4$.
 - (a) Find an expression for $f^{-1}(x)$. [5]
 - (b) Write down the domain and range of f^{-1} . [1]
- **10.** The function *f* has domain $[1, \infty)$ and is defined by

$$f(x) = 2x - k,$$

where k is a constant.

(a) Write down, in terms of k, the range of f. [1]

The function g has domain $[0, \infty)$ and is defined by

$$g(x) = 3x^2 + 4.$$

- (b) Find the largest value of k that allows the function gf to be formed. [2]
- (c) Given that gf(2) = 31, find the value of k. [4]

(975-01)