GCE AS/A level

975/01

MATHEMATICS C3 PURE MATHEMATICS

A.M. FRIDAY, 23 May 2008
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$
\int_{0}^{1} \sqrt{1+\mathrm{e}^{x}} \mathrm{~d} x
$$

Show your working and give your answer correct to three decimal places.
2. (a) Show, by counter-example, that the statement

$$
\tan 2 \theta \equiv \frac{2 \tan \theta}{1+\tan ^{2} \theta}
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
2 \sec ^{2} \theta=8-\tan \theta \tag{6}
\end{equation*}
$$

3. Given that

$$
\begin{equation*}
x^{2}+x \sin y+y^{3}=\pi^{3}+1, \tag{4}
\end{equation*}
$$

find the value of $\frac{d y}{d x}$ at the point $(1, \pi)$.
4. Given that $x=\ln t, y=\mathrm{e}^{2 t}$,
(a) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{te}^{2 t}$,
(b) find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ in terms of t, simplifying your answer.
5. (a) Show that $f(x)=\sin ^{-1} x-2 x^{\frac{3}{2}}+1$ has a stationary value when x satisfies

$$
\begin{equation*}
9 x^{3}-9 x+1=0 \tag{4}
\end{equation*}
$$

(b) Show that the equation

$$
9 x^{3}-9 x+1=0
$$

has a root α between 0 and $0 \cdot 2$.
The recurrence relation

$$
x_{n+1}=x_{n}^{3}+\frac{1}{9}
$$

with $x_{0}=0.1$ can be used to find α. Find and record the values of x_{1}, x_{2}, x_{3}.
Write down the value of x_{3} correct to five decimal places and prove that this is the value of α correct to five decimal places.
6. (a) The diagram shows the graph of $y=f(x)$. The graph has a stationary point at $(0,-4)$ and it intersects the x-axis at the points $(-2,0)$ and $(2,0)$.

Sketch the graph of $y=3 f(x-1)$, indicating the coordinates of the stationary point and of the points where the graph crosses the x-axis.
(b) Solve $3|x|+1=2-|x|$.
(c) Solve $|2 x-9|>3$.
7. (a) Find (i) $\int \sin 3 x \mathrm{~d} x$,
(ii) $\int \frac{2}{3 x+5} \mathrm{~d} x$,
(iii) $\int e^{3 x+4} \mathrm{~d} x$.
(b) Evaluate $\int_{0}^{1} \frac{1}{(2 x+1)^{4}} \mathrm{~d} x$.
8. Differentiate (a) $\cot 2 x$,
(b) $x^{2} \ln x$,
(c) $\frac{x^{2}+1}{x^{2}-2}$,
simplifying your answers wherever possible.
[2], [2], [3]

TURN OVER

9. The function f has domain $x \leqslant-1$ and is defined by

$$
f(x)=(x+1)^{2}-2 .
$$

(a) Find the range of f.
(b) Find an expression for $f^{-1}(x)$. State the domain and range of f^{-1}.
10. The function f has domain (- ,

$$
f(x)=2 \mathrm{e}^{x} .
$$

The function g has domain [1, कoand is defined by

$$
g(x)=3 \ln x .
$$

(a) Explain why $g f(-1)$ does not exist.
(b) Find in its simplest form an expression for $f g(x)$. State the domain and range of $f g$.

