C2/H <u>Coordinate Geometry of a</u> <u>Circle</u>

A circle C has centre D and equation

$$x^2 + y^2 + 2x - 8y + 8 = 0.$$

(a) Find the coordinates of D and the radius of C.

[3]

- (b) A line is drawn through the point P(4,6) so that it touches the circle C at the point T.
 - (i) Show that $PT = \sqrt{20}$.
 - (ii) Find the equation of the circle centre P which passes through the point T.

[5]

(a) Find the centre and radius of the circle C given by

$$x^2 + y^2 - 8x + 4y + 11 = 0.$$

[3]

[3]

(b) Given that the circle

$$x^2 + y^2 = a^2 (a > 0)$$

touches C externally, find the value of a, giving your answer correct to two decimal places.
[4]

The circles C_1 and C_2 are given

by
$$(x+1)^2 + (y+2)^2 = 25$$

and $x^2 + y^2 - 10x - 5y + 25 = 0$, respectively.

- (a) Write down the radius and the coordinates of the centre of C_1 . [2]
- (b) Find the radius and the coordinates of the centre of C_2 . [3]
- (c) Show that C_1 and C_2 touch. [3]
- The circle C is given by the equation

$$x^2 + y^2 - 8x + 4y - 5 = 0.$$

- (a) Find the radius and the coordinates of the centre of C.
- (b) (i) Show that P(1, -6) lies on C. [1]
 - (ii) Find the equation of the tangent to C at P. [4]

(5)	A circle C has equation		
	$(x-5)^2 + (y-7)^2 = 25.$		
	(a) Write down the radius of the circle and the coordinates of its centre.	[2]	
	(b) Find the equation of the tangent to the circle C at the point $(2,3)$.	[4]	
	(c) (i) Show that $Q(13,13)$ lies outside the circle C .	[2]	
	(ii) Find the equation of a circle with centre at Q which touch circle C externally.	es the [3]	
6	The circles C_1 and C_2 are given by	Decision of the second	
	$x^{2} + (y + 3)^{2} = 1,$ $x^{2} + y^{2} - 12x - 10y - 60 = 0,$	A grid	
•	respectively.		
	(a) Write down the radius and the coordinates of the centre of C_1 .		[2]
	(b) Find the radius and the coordinates of the centre of C_2 .		[3]
	(c) Find the equation of the smallest circle that passes through the centres of C_1 a	nd C_2 .	[5]
7	Two circles C_1 and C_2 have equations $(x-10)^2 + (y-8)^2 = 4$		
	and $x^2 + y^2 - 6x - 8y + 9 = 0.$		
	(a) Write down the radius and the coordinates of the centre of C_1 .		[2]
	(b) Find the radius and the coordinates of the centre of C_2 .		[3]
	(c) Show that the circles do not intersect.		[3]
(8)	The circle C has equation		
)	$x^2 + y^2 - 8x - 10y + 32 = 0.$		
	(a) Find the radius and the coordinates of the centre of C .		[3]
	(b) Show that $P(8, 8)$ lies outside C .		[2]
	(c) The line PT is a tangent to C touching C at T. Find the length of PT.		[3]
	C(d) Find the equation of a circle with centre P which touches C.		[3]
9	The points $(8, 4)$ and $(2, 2)$ are the ends of a diameter of a circle C .		

Find the equation of C.

Find the equation of the tangent to C at the point (8, 4).

(a)

[3]

[4]