WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced Subsidiary/Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

973/01

MATHEMATICS C1

Pure Mathematics

P.M. WEDNESDAY, 10 January 2007

 $(1\frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

• a 12 page answer book;

• a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Answer **all** questions. Calculators are **not** allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C, D have coordinates (-5, 0), (0, 5), (3, 4), (4, -3), respectively.

1		
(<i>a</i>)	Show that AC is perpendicular to BD.	[4]
(<i>b</i>)	Show that <i>AD</i> is parallel to <i>BC</i> .	[3]
(c)	Show that the equation of AC is	
	x - 2y + 5 = 0	
	and find the equation of BD.	[3]
(<i>d</i>)	The lines AC and BD intersect at E.	

- (i) Show that the coordinates of E are (1, 3). [2]
 - (ii) Find the length of AE. [2]
- 2. Simplify each of the following expressions, expressing your answers in surd form.

(a)
$$2\sqrt{32} + 3\sqrt{8} - \sqrt{18}$$
 [3]

(b)
$$\frac{6+\sqrt{30}}{6-\sqrt{30}}$$
 [4]

- 3. When $9x^3 + 6x^2 5x + p$ is divided by x 1, the remainder is 8.
 - (a) Show that p = -2. [2]
 - (b) Factorise $9x^3 + 6x^2 5x 2$. [5]

(b) Solve
$$(2 + x)^4 = 14 + 33x + 25x^2 + 8x^3 + x^4$$
. [4]

5. (a) Given that
$$y = 2x^2 - 5x + 3$$
, find $\frac{dy}{dx}$ from first principles. [5]

(b) Find the equation of the normal to the curve $y = 2x^2 - 5x + 3$ at the point (2, 1). [3]

6. Differentiate each of the following with respect to *x*.

(a)
$$2x^5 + \frac{24}{x^2} - 3\sqrt{x}$$
 [3]

(b)
$$x^2(3x+1)$$
 [2]

7. Given that the equation

has real roots, show that

 $k^2 - 3k - 4 \leq 0.$

 $kx^2 - 4x + (k - 3) = 0$

Find the range of values of k satisfying this inequality.

8. (a) Express $x^2 + 4x + 9$ in the form $(x + a)^2 + b$, where the values of a and b are to be determined. Deduce the maximum value of

$$\frac{1}{x^2 + 4x + 9}$$
 . [4]

- (b) Show that the line y = x + 2 touches the curve $y = x^2 5x + 11$, and find the coordinates of the point of contact. [4]
- 9. The curve *C* has equation

$$y = 4x^3 - 12x + 3.$$

- (a) Find the coordinates of the stationary points of C and determine the nature of each of these points. [7]
- (b) Sketch C, indicating the coordinates of the stationary points. [3]
- (c) Given that $f(x) = 4x^3 12x + 3$, sketch the curve y = f(x 1), indicating the coordinates of **each** of the stationary points. [3]

[7]