MATHEMATICS C1

Pure Mathematics

P.M. WEDNESDAY, 10 January 2007
($1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C, D have coordinates $(-5,0),(0,5),(3,4)(4,-3)$, respectively.
(a) Show that $A C$ is perpendicular to $B D$.
(b) Show that $A D$ is parallel to $B C$.
(c) Show that the equation of $A C$ is

$$
x-2 y+5=0
$$

and find the equation of $B D$.
(d) The lines $A C$ and $B D$ intersect at E.
(i) Show that the coordinates of E are $(1,3)$.
(ii) Find the length of $A E$.
2. Simplify each of the following expressions, expressing your answers in surd form.
(a) $2 \sqrt{32}+3 \sqrt{8}-\sqrt{18}$
(b) $\frac{6+\sqrt{30}}{6-\sqrt{30}}$
3. When $9 x^{3}+6 x^{2}-5 x+p$ is divided by $x-1$, the remainder is 8 .
(a) Show that $p=-2$.
(b) Factorise $9 x^{3}+6 x^{2}-5 x-2$.
4. (a) Expand $(a+b)^{4}$, simplifying your coefficients as much as possible.
(b) Solve $(2+x)^{4}=14+33 x+25 x^{2}+8 x^{3}+x^{4}$.
5. (a) Given that $y=2 x^{2}-5 x+3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Find the equation of the normal to the curve $y=2 x^{2}-5 x+3$ at the point $(2,1)$.
6. Differentiate each of the following with respect to x.
(a) $2 x^{5}+\frac{24}{x^{2}}-3 \sqrt{x}$
(b) $x^{2}(3 x+1)$
7. Given that the equation

$$
k x^{2}-4 x+(k-3)=0
$$

has real roots, show that

$$
k^{2}-3 k-4 \leqslant 0
$$

Find the range of values of k satisfying this inequality.
8. (a) Express $x^{2}+4 x+9$ in the form $(x+a)^{2}+b$, where the values of a and b are to be determined.
Deduce the maximum value of

$$
\begin{equation*}
\frac{1}{x^{2}+4 x+9} \tag{4}
\end{equation*}
$$

(b) Show that the line $y=x+2$ touches the curve $y=x^{2}-5 x+11$, and find the coordinates of the point of contact.
9. The curve C has equation

$$
y=4 x^{3}-12 x+3 .
$$

(a) Find the coordinates of the stationary points of C and determine the nature of each of these points.
(b) Sketch C, indicating the coordinates of the stationary points.
(c) Given that $f(x)=4 x^{3}-12 x+3$, sketch the curve $y=f(x-1)$, indicating the coordinates of each of the stationary points.

