GCE AS/A level

973/01

MATHEMATICS Cl
Pure Mathematics
A.M. THURSDAY, 15 May 2008
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C, D have coordinates $(-7,4),(3,-1),(6,1),(k,-15)$ respectively.
(a) Find the gradient of $A B$.
(b) Find the equation of $A B$ and simplify your answer.
(c) Find the length of $A B$.
(d) The point E is the mid-point of $A B$. Find the coordinates of E.
(e) Given that $C D$ is perpendicular to $A B$, find the value of the constant k.
2. Simplify

$$
\text { (a) } \sqrt{75}-\frac{9}{\sqrt{3}}+(\sqrt{6} \times \sqrt{2}) \text {, }
$$

(b) $\frac{5 \sqrt{5}-2}{4+\sqrt{5}}$.
3. The point P lies on the curve C with equation $y=3 x^{2}-8 x+7$. Given that the x-coordinate of P is 2 , find the equation of the normal to C at P.
4. (a) Given that $y=5 x^{2}+3 x-4$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Given that $y=\frac{8}{x}+3 \sqrt{x}$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=4$.
5. (a) Express $x^{2}+6 x-4$ in the form $(x+a)^{2}+b$ where the values of a, b are to be determined. [2]
(b) Use your results to part (a) to find the least value of $2 x^{2}+12 x-8$ and the corresponding value of x.
6. Use the binomial theorem to expand $(5+2 x)^{3}$, simplifying each term of your expansion.
7. The polynomial $4 x^{3}+p x^{2}-11 x+q$ has $x-2$ as a factor. When the polynomial is divided by $x+1$, the remainder is 9 .
(a) Show that $p=-4$ and $q=6$.
(b) Factorise $4 x^{3}-4 x^{2}-11 x+6$.
8. The diagram shows a sketch of the graph of $y=f(x)$. The graph has a maximum point at $(3,4)$ and intersects the x-axis at the points $(-1,0)$ and $(7,0)$ and the y-axis at the point $(0,2)$.

(a) Sketch the graph of $y=f(x+2)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis.
(b) Sketch the graph of $y=f(x)+3$, indicating the coordinates of the stationary point and the coordinates of the point of intersection of the graph with the y-axis.
9. The curve C has equation

$$
\begin{equation*}
y=-2 x^{3}+3 x^{2}+12 x-5 \tag{7}
\end{equation*}
$$

Find the coordinates and nature of each of the stationary points of C.
10. (a) Solve the inequality $2 x^{2}-3 x-9 \geqslant 0$.
(b) (i) Find the range of values of m for which the quadratic equation

$$
3 x^{2}-6 x+m=0
$$

has no real roots.
(ii) The curve C has equation $y=3 x^{2}-4 x+7$. The line L has equation $y=2 x+k$, where k is a constant. Given that L and C do not intersect, find the range of possible values of k.

