GCE AS/A level

976/01

MATHEMATICS C4
 Pure Mathematics

P.M. FRIDAY, 18 June 2010
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function f is defined by

$$
f(x)=\frac{8-x-x^{2}}{x(x-2)^{2}} .
$$

(a) Express $f(x)$ in terms of partial fractions.
(b) Use your result to part (a) to find the value of $f^{\prime}(1)$.
2. Find the equation of the normal to the curve

$$
\begin{equation*}
5 x^{2}+4 x y-y^{3}=5 \tag{5}
\end{equation*}
$$

at the point $(1,-2)$.
3. (a) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
2 \cos 2 \theta=9 \cos \theta+7 \tag{5}
\end{equation*}
$$

(b) (i) Express $5 \sin x-12 \cos x$ in the form $R \sin (x-\alpha)$, where R and α are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Use your results to part (i) to find the least value of

$$
\frac{1}{5 \sin x-12 \cos x+20}
$$

Write down a value for x for which this least value occurs.
4. The region R is bounded by the curve $y=\sin x$, the x-axis and the lines $x=\frac{\pi}{6}, x=\frac{\pi}{3}$. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to three decimal places.
5. Expand $\left(1-\frac{x}{4}\right)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^{2}.

State the range of values of x for which your expansion is valid.
Hence, by writing $x=1$ in your expansion, show that

$$
\begin{equation*}
\sqrt{3} \approx \frac{111}{64} \tag{5}
\end{equation*}
$$

6. The parametric equations of the curve C are

$$
x=\frac{2}{t}, y=4 t
$$

(a) Show that the tangent to C at the point P with parameter p has equation

$$
\begin{equation*}
y=-2 p^{2} x+8 p \tag{4}
\end{equation*}
$$

(b) The tangent to C at the point P passes through the point $(2,3)$. Show that P can be one of
7. (a) Find $\int x^{3} \ln x \mathrm{~d} x$.
(b) Use the substitution $u=2 x-3$ to evaluate $\int_{1}^{2} x(2 x-3)^{4} \mathrm{~d} x$.
8. The value, $£ V$, of a car may be modelled as a continuous variable. At time t years, the rate of decrease of V is directly proportional to V^{2}.
(a) Write down a differential equation satisfied by V.
(b) Given that $V=12000$ when $t=0$, show that

$$
V=\frac{12000}{a t+1}
$$

where a is a constant.
(c) The value of the car at the end of two years is $£ 9000$. Find the value of the car at the end of four years.
9. The position vectors of the points A and B are given by

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}, \\
& \mathbf{b}=\mathbf{i}-4 \mathbf{j}+8 \mathbf{k}
\end{aligned}
$$

respectively.
(a) Find the angle between the vectors \mathbf{a} and \mathbf{b}.
(b) (i) Write down the vector $\mathbf{A B}$.
(ii) Find the vector equation of the line $A B$.
(c) The vector equation of the line L is given by

$$
\mathbf{r}=-\mathbf{i}-4 \mathbf{j}-2 \mathbf{k}+\mu(\mathbf{i}+\mathbf{j}-\mathbf{k})
$$

Show that the lines $A B$ and L intersect and find the position vector of the point of intersection.
10. Prove by contradiction the following proposition.

$$
\text { If } a, b \text { are positive real numbers, then } a+b \geqslant 2 \sqrt{a b} \text {. }
$$

The first line of the proof is given below.
Assume that positive real numbers a, b exist such that $a+b<2 \sqrt{a b}$.

