GCE AS/A level

975/01

MATHEMATICS C3
Pure Mathematics
P.M. WEDNESDAY, 20 January 2010
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for the integral

$$
\int_{0}^{1} \ln \left(1+\mathrm{e}^{x}\right) \mathrm{d} x .
$$

Show your working and give your answer correct to three decimal places.
2. (a) Show, by counter-example, that the statement

$$
\sin 4 \theta \equiv 4 \sin ^{3} \theta-3 \sin \theta
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
3 \sec ^{2} \theta=7-11 \tan \theta
$$

Give your answers correct to one decimal place.
3. (a) The curve C is defined by

$$
\begin{equation*}
y^{3}+2 x^{3} y=3 x^{2}+4 x-3 \tag{4}
\end{equation*}
$$

Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(2,1)$.
(b) Given that $x=3 t^{2}, y=4 t^{3}+t^{6}$, find, in terms of t,
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.

Simplify your answers.
4. Show that the equation

$$
2-10 x+\sin x=0
$$

has a root α between 0 and $\frac{\pi}{8}$.
The recurrence relation

$$
x_{n+1}=\frac{1}{10}\left(2+\sin x_{n}\right),
$$

with $x_{0}=0 \cdot 2$, can be used to find α. Find and record the values of $x_{1}, x_{2}, x_{3}, x_{4}$. Write down the value of x_{4} correct to five decimal places and prove that this is the value of α correct to five decimal places.
5. Differentiate each of the following with respect to x, simplifying your answer wherever possible.
(a) $\tan ^{-1} 3 x$
(b) $\ln \left(2 x^{2}-3 x+4\right)$
(c) $\mathrm{e}^{2 x} \sin x$
(d) $\frac{1-\cos x}{1+\cos x}$
6. (a) Find
(i) $\int \frac{1}{4 x-7} \mathrm{~d} x$,
(ii) $\int \mathrm{e}^{3 x-1} \mathrm{~d} x$,
(iii) $\int \frac{5}{(2 x+3)^{4}} \mathrm{~d} x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \sin \left(2 x+\frac{\pi}{4}\right) \mathrm{d} x$, expressing your answer in surd form.
7. Solve the following.
(a) $2|x+1|-3=7$
(b) $|5 x-8| \geqslant 3$
8. Given that $f(x)=\mathrm{e}^{x}$, sketch, on the same diagram, the graphs of $y=f(x)$ and $y=2 f(x)-3$. Label the coordinates of the point of intersection of each of the graphs with the y-axis. Indicate the behaviour of each of the graphs for large positive and negative values of x.
9. The function f has domain $[4, \infty)$ and is defined by

$$
f(x)=\frac{1}{2} \sqrt{x-3} .
$$

(a) Find an expression for $f^{-1}(x)$. Write down the range and domain of f^{-1}.
(b) Sketch the graph of $y=f^{-1}(x)$. On the same diagram, sketch the graph of $y=f(x)$.
10. The functions f and g have domains $(0, \infty)$ and $(2, \infty)$ respectively and are defined by

$$
\begin{aligned}
& f(x)=x^{2}-1, \\
& g(x)=2 x-1
\end{aligned}
$$

(a) Write down the ranges of f and g.
(b) Give the reason why $g f(1)$ cannot be formed.
(c) (i) Find an expression for $f g(x)$. Simplify your answer.
(ii) Write down the domain and range of $f g$.

