

GCE AS/A level

975/01

MATHEMATICS C3 Pure Mathematics

P.M. WEDNESDAY, 20 January 2010 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Use Simpson's Rule with five ordinates to find an approximate value for the integral 1.

$$\int_0^1 \ln(1+e^x) \,\mathrm{d}x.$$

Show your working and give your answer correct to three decimal places. [4]

2. Show, by counter-example, that the statement (a)

$$\sin 4\theta \equiv 4\sin^3 \theta - 3\sin \theta$$

is false.

(b) Find all values of θ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$ satisfying

 $3 \sec^2 \theta = 7 - 11 \tan \theta$.

- Give your answers correct to one decimal place. [6]
- 3. (*a*) The curve *C* is defined by

$$y^{3} + 2x^{3}y = 3x^{2} + 4x - 3.$$

Find the value of $\frac{dy}{dx}$ at the point (2, 1). [4]

(b) Given that
$$x = 3t^2$$
, $y = 4t^3 + t^6$, find, in terms of t,
(i) $\frac{dy}{dx}$,

2

(ii)
$$\frac{d^2 y}{dx^2}$$

Simplify your answers.

[7]

[2]

Show that the equation **4**.

$$2 - 10x + \sin x = 0$$

has a root α between 0 and $\frac{\pi}{8}$.

The recurrence relation

$$x_{n+1} = \frac{1}{10} \left(2 + \sin x_n \right) \,,$$

with $x_0 = 0.2$, can be used to find α . Find and record the values of x_1, x_2, x_3, x_4 . Write down the value of x_4 correct to five decimal places and prove that this is the value of α correct to five decimal places. [7]

5. Differentiate each of the following with respect to x, simplifying your answer wherever possible.

(a)
$$\tan^{-1} 3x$$
 (b) $\ln(2x^2 - 3x + 4)$ [2], [2]

(c)
$$e^{2x} \sin x$$
 (d) $\frac{1 - \cos x}{1 + \cos x}$ [3], [3]

6. (*a*) Find

(i)
$$\int \frac{1}{4x-7} dx$$
, (ii) $\int e^{3x-1} dx$, (iii) $\int \frac{5}{(2x+3)^4} dx$. [6]

(b) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \sin\left(2x + \frac{\pi}{4}\right) dx$$
, expressing your answer in surd form. [4]

7. Solve the following.

(a) 2|x+1| - 3 = 7 [2]

$$(b) \quad |5x-8| \ge 3 \tag{3}$$

- 8. Given that $f(x) = e^x$, sketch, on the same diagram, the graphs of y = f(x) and y = 2f(x) 3. Label the coordinates of the point of intersection of each of the graphs with the *y*-axis. Indicate the behaviour of each of the graphs for large positive and negative values of *x*. [5]
- **9.** The function *f* has domain $[4, \infty)$ and is defined by

$$f(x) = \frac{1}{2}\sqrt{x-3}$$

- (a) Find an expression for $f^{-1}(x)$. Write down the range and domain of f^{-1} . [5]
- (b) Sketch the graph of $y = f^{-1}(x)$. On the same diagram, sketch the graph of y = f(x). [3]
- 10. The functions f and g have domains $(0, \infty)$ and $(2, \infty)$ respectively and are defined by

$$f(x) = x^2 - 1,$$

 $g(x) = 2x - 1.$

- (a) Write down the ranges of f and g. [2]
- (b) Give the reason why gf(1) cannot be formed. [1]
- (c) (i) Find an expression for fg(x). Simplify your answer.
 - (ii) Write down the domain and range of fg. [4]