

GCE AS/A level

975/01

MATHEMATICS C3 PURE MATHEMATICS

P.M. WEDNESDAY, 9 June 2010 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$\int_0^{0.8} \frac{1}{1 + e^{2x}} dx.$$

Show your working and give your answer correct to four decimal places.

[4]

2. (a) Show, by counter-example, that the statement

$$\cos\theta + \cos 4\theta \equiv \cos 2\theta + \cos 3\theta$$

is false. [2]

(b) Find all values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ satisfying

$$2\tan^2\theta = \sec\theta + 8.$$
 [6]

3. (a) Given that

$$y^4 + 4x^2y = 3x^3 - 5x,$$

find an expression for $\frac{dy}{dx}$ in terms of x and y. [4]

(b) Given that
$$x = 4t + \cos 2t$$
, $y = \sin 3t$, show that $\frac{dy}{dx} = \frac{1}{\sqrt{2}}$ when $t = \frac{\pi}{12}$. [5]

4. Show that the equation

$$4x^3 - 2x - 5 = 0$$

has a root α between 1 and 2.

The recurrence relation

$$x_{n+1} = \left(\frac{2x_n + 5}{4}\right)^{\frac{1}{3}},$$

with $x_0 = 1.2$, may be used to find α . Find and record the values of x_1 , x_2 , x_3 , x_4 . Write down the value of x_4 correct to five decimal places and prove that this value is the value of α correct to five decimal places.

5. (a) Differentiate **each** of the following with respect to x, simplifying your answer wherever possible.

(i)
$$(7+2x)^{13}$$
 (ii) $\sin^{-1}5x$ (iii) x^3e^{4x} [7]

(b) By first writing $\tan x = \frac{\sin x}{\cos x}$, show that

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x. \tag{3}$$

6. (a) Find

(i)
$$\int \sqrt{7x-9} \, dx$$
, (ii) $\int e^{\frac{x}{6}} \, dx$, (iii) $\int \frac{4}{5x-1} \, dx$. [6]

(b) Evaluate
$$\int_{2}^{4} \frac{8}{(3x-4)^3} dx$$
. [4]

- 7. (a) Solve the inequality $|3x+1| \le 5$. [3]
 - (b) The function f is defined by f(x) = |x|.
 - (i) Sketch the graph of y = f(x).
 - (ii) On a separate set of axes, sketch the graph of y = f(x 3) + 2. On your sketch, indicate the coordinates of the point on the graph where the value of the y-coordinate is least and the coordinates of the point where the graph crosses the y-axis. [4]
- **8.** The function *g* is defined by $g(x) = 3\ln(4x^2 + 9) + 2x 7$.

(a) Show that
$$g'(x) = \frac{2(2x+3)^2}{4x^2+9}$$
. [3]

- (b) (i) Show that the graph of y = g(x) has one stationary point.
 - (ii) Find the nature of this stationary point. [4]

TURN OVER

9. The function f has domain $[1,\infty)$ and is defined by

$$f(x) = \ln(3x - 2) + 5.$$

- (a) Find an expression for $f^{-1}(x)$. [4]
- (b) State the domain of f^{-1} . [1]
- 10. The functions f and g have domains $[-3, \infty)$ and $(-\infty, \infty)$ respectively and are defined by

$$f(x) = \sqrt{x+4}$$
,
 $g(x) = 2x^2 - 3$.

- (a) Write down the range of f and the range of g. [2]
- (b) Find an expression for gf(x). Simplify your answer. [2]
- (c) Solve the equation fg(x) = 17. [4]