GCE AS/A level

975/01

MATHEMATICS C3
 PURE MATHEMATICS

P.M. WEDNESDAY, 9 June 2010
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$
\begin{equation*}
\int_{0}^{0.8} \frac{1}{1+\mathrm{e}^{2 x}} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

Show your working and give your answer correct to four decimal places.
2. (a) Show, by counter-example, that the statement

$$
\begin{equation*}
\cos \theta+\cos 4 \theta \equiv \cos 2 \theta+\cos 3 \theta \tag{2}
\end{equation*}
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
2 \tan ^{2} \theta=\sec \theta+8 \tag{6}
\end{equation*}
$$

3. (a) Given that

$$
\begin{equation*}
y^{4}+4 x^{2} y=3 x^{3}-5 x \tag{4}
\end{equation*}
$$

find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Given that $x=4 t+\cos 2 t, y=\sin 3 t$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{2}}$ when $t=\frac{\pi}{12}$.
4. Show that the equation

$$
4 x^{3}-2 x-5=0
$$

has a root α between 1 and 2 .
The recurrence relation

$$
x_{n+1}=\left(\frac{2 x_{n}+5}{4}\right)^{\frac{1}{3}}
$$

with $x_{0}=1 \cdot 2$, may be used to find α. Find and record the values of $x_{1}, x_{2}, x_{3}, x_{4}$. Write down the value of x_{4} correct to five decimal places and prove that this value is the value of α correct to five decimal places.
5. (a) Differentiate each of the following with respect to x, simplifying your answer wherever possible.
(i) $(7+2 x)^{13}$
(ii) $\sin ^{-1} 5 x$
(iii) $x^{3} \mathrm{e}^{4 x}$
(b) By first writing $\tan x=\frac{\sin x}{\cos x}$, show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x \tag{3}
\end{equation*}
$$

6. (a) Find
(i) $\int \sqrt{7 x-9} \mathrm{~d} x$,
(ii) $\int \mathrm{e}^{\frac{x}{6}} \mathrm{~d} x$,
(iii) $\int \frac{4}{5 x-1} \mathrm{~d} x$.
(b) Evaluate $\int_{2}^{4} \frac{8}{(3 x-4)^{3}} \mathrm{~d} x$.
7. (a) Solve the inequality $|3 x+1| \leqslant 5$.
(b) The function f is defined by $f(x)=|x|$.
(i) Sketch the graph of $y=f(x)$.
(ii) On a separate set of axes, sketch the graph of $y=f(x-3)+2$. On your sketch, indicate the coordinates of the point on the graph where the value of the y-coordinate is least and the coordinates of the point where the graph crosses the y-axis.
8. The function g is defined by $g(x)=3 \ln \left(4 x^{2}+9\right)+2 x-7$.
(a) Show that $g^{\prime}(x)=\frac{2(2 x+3)^{2}}{4 x^{2}+9}$.
(b) (i) Show that the graph of $y=g(x)$ has one stationary point.
(ii) Find the nature of this stationary point.
9. The function f has domain $[1, \infty)$ and is defined by

$$
f(x)=\ln (3 x-2)+5 .
$$

(a) Find an expression for $f^{-1}(x)$.
(b) State the domain of f^{-1}.
10. The functions f and g have domains $[-3, \infty)$ and $(-\infty, \infty)$ respectively and are defined by

$$
\begin{aligned}
& f(x)=\sqrt{x+4} \\
& g(x)=2 x^{2}-3
\end{aligned}
$$

(a) Write down the range of f and the range of g.
(b) Find an expression for $g f(x)$. Simplify your answer.
(c) Solve the equation $f g(x)=17$.

