GCE AS/A level

975/01

MATHEMATICS C3 PURE MATHEMATICS

A.M. MONDAY, l June 2009
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for

$$
\begin{equation*}
\int_{1}^{1 \cdot 8} \sqrt{8+x^{3}} \mathrm{~d} x \tag{4}
\end{equation*}
$$

Show your working and give your answer correct to four decimal places.
2. (a) Show, by counter-example, that the statement

$$
\cos \theta+\cos 3 \theta \equiv 2 \cos 2 \theta \cos 4 \theta
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
\cot ^{2} \theta-9=\operatorname{cosec} \theta-\operatorname{cosec}^{2} \theta \tag{6}
\end{equation*}
$$

3. (a) Given that

$$
\begin{equation*}
x^{3}+y^{2}+x \tan 2 y=8 \tag{4}
\end{equation*}
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Given that $x=3 t+t^{2}, y=\frac{1+4 t}{3+2 t}$, find
(i) $\frac{\mathrm{d} y}{\mathrm{~d} t}$,
(ii) $\frac{d y}{d x}$, simplifying your answer as much as possible.
4. (a) Show that $f(x)=(2 x-3) \mathrm{e}^{2 x}-4 x+5$ has a stationary value when x satisfies

$$
\begin{equation*}
(x-1) \mathrm{e}^{2 x}-1=0 \tag{6}
\end{equation*}
$$

(b) Show that the equation

$$
(x-1) \mathrm{e}^{2 x}-1=0
$$

has a root α between 1 and 2 .
The recurrence relation

$$
x_{n+1}=1+\mathrm{e}^{-2 x_{n}}
$$

with $x_{0}=1 \cdot 1$ may be used to find α. Find and record the values of x_{1}, x_{2}, x_{3}. Write down the value of x_{3} correct to four decimal places and prove that this value is the value of α correct to four decimal places.
5. Differentiate each of the following with respect to x, simplifying your answers where possible.
(a) $\ln \left(3+2 x^{2}\right)$
(b) $x^{2} \tan ^{-1} x$
(c) $\left(5+7 x^{2}\right)^{10}$
[2], [2], [3]
6. Solve the following.
(a) $|9 x-7| \leqslant 3$
(b) $\sqrt{5|x|+1}=3$
7. (a) Find (i) $\int \sin 5 x \mathrm{~d} x$,
(ii) $\int \frac{3}{(2 x+7)^{3}} \mathrm{~d} x$.
(b) Evaluate $\int_{0}^{3} \frac{2}{5 x+3} \mathrm{~d} x$, giving your answer correct to three decimal places.
8.

The diagram shows a sketch of the graph of $y=f(x)$. The graph has its highest point at $(2,3)$ and intersects the x-axis at the points $(-1,0)$ and $(4,0)$. Sketch the graph of $y=3 f(x-2)$, indicating the coordinates of three points on the graph.

TURN OVER

9. The function f has domain $(-\infty, \infty)$ and is defined by

$$
f(x)=3 \mathrm{e}^{2 x}
$$

The function g has domain $(0, \infty)$ and is defined by

$$
\begin{equation*}
g(x)=\ln 4 x \tag{2}
\end{equation*}
$$

(a) Write down the domain and range of $f g$.
(b) Solve the equation

$$
\begin{equation*}
f g(x)=12 \tag{5}
\end{equation*}
$$

10. The function f has domain $(0, \infty)$ and is defined by

$$
f(x)=1-\frac{2}{3 x^{2}+2}
$$

(a) Show that $f^{\prime}(x)$ is always positive.
(b) Write down the range of f.
(c) Find an expression for $f^{-1}(x)$. State the domain and range of f^{-1}.

