GCE AS/A level

973/01

MATHEMATICS C1
 Pure Mathematics

A.M. MONDAY, 11 January 2010
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C have coordinates $(-11,10),(-5,12),(3,8)$ respectively.

The line L_{1} passes through the point A and is parallel to $B C$.
The line L_{2} passes through the point C and is perpendicular to $B C$.
(a) Find the gradient of $B C$.
(b) (i) Show that L_{1} has equation

$$
x+2 y-9=0 .
$$

(ii) Find the equation of L_{2}.
(c) The lines L_{1} and L_{2} intersect at the point D.
(i) Show that D has coordinates $(1,4)$.
(ii) Find the length of $B D$.
(iii) Find the coordinates of the mid-point of $B D$.
2. Simplify
(a) $\frac{2 \sqrt{11}-3}{\sqrt{11}+2}$,
(b) $\frac{22}{\sqrt{2}}-\sqrt{50}-(\sqrt{2})^{5}$.
3. The curve C has equation $y=\frac{6}{x^{2}}+\frac{7 x}{4}-2$. The point P has coordinates $(2,3)$ and lies on C.

Find the equation of the normal to C at P.
4. (a) Express $4 x^{2}-8 x+7$ in the form $a(x+b)^{2}+c$, where a, b and c are constants whose values are to be found.
(b) Use your answer to part (a) to find the greatest value of

$$
\begin{equation*}
\frac{1}{4 x^{2}-8 x+7} \tag{2}
\end{equation*}
$$

5. (a) Find the range of values of k for which the quadratic equation

$$
k x^{2}+3 x-5=0
$$

has no real roots.
(b) Solve the inequality $2 x^{2}-x-6>0$.
6. (a) Given that $y=3 x^{2}-7 x-5$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Given that $y=a x^{\frac{5}{2}}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2$ when $x=4$, find the value of the constant a.
7. In the binomial expansion of $(a+3 x)^{5}$, the coefficient of the term in x^{2} is eight times the coefficient of the term in x. Find the value of the constant a.
8. The polynomial $f(x)$ is defined by

$$
f(x)=2 x^{3}+11 x^{2}+4 x-5
$$

(a) (i) Evaluate $f(-2)$.
(ii) Using your answer to part (i), write down one fact which you can deduce about $f(x)$.
(b) Solve the equation $f(x)=0$.

TURN OVER.

9. Figure 1 shows a sketch of the graph of $y=f(x)$. The graph has a maximum point at $(2,5)$ and intersects the x-axis at the points $(-2,0)$ and $(6,0)$.

Figure 1
(a) Sketch the graph of $y=f\left(\frac{x}{2}\right)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis.
(b) Figure 2 shows a sketch of the graph having one of the following equations with an appropriate value of either p, q or r.

$$
\begin{aligned}
& y=f(x+p), \text { where } p \text { is a constant } \\
& y=f(x)+q, \text { where } q \text { is a constant } \\
& y=r f(x), \text { where } r \text { is a constant }
\end{aligned}
$$

Figure 2
Write down the equation of the graph sketched in Figure 2, together with the value of the corresponding constant.
10. The curve C has equation

$$
y=x^{3}-6 x^{2}+20
$$

(a) Find the coordinates and the nature of each of the stationary points of C.
(b) Sketch C, indicating the coordinates of each of the stationary points.
(c) Given that the equation

$$
x^{3}-6 x^{2}+20=k
$$

has three distinct real roots, find the range of possible values for k.

